Ελληνικά

San’an and Inari acquire Lumileds for $239 million

550
2025-08-13 14:32:47
Δείτε τη μετάφραση

San’an Optoelectronics, an LED chip manufacturer, based in China, and Inari Amertron Berhad, a Malaysian company that provides outsourced semiconductor assembly and test (“OSAT”) services to the semiconductor industry, are to acquire Lumileds Holding B.V. and its European and Asian subsidiaries (“Lumileds International”). Lumileds is based in Schiphol, The Netherlands.
The all-cash deal is valued at US$239 million, according to market intelligence company TrendForce. TrendForce’s LED industry demand and supply database noted that, “Lumileds ranks among the world’s top seven LED packaging companies.

The acquisition is set to help San’an gain entry into the international cross-licensing patent alliance led by Nichia, ams Osram, Cree LED, Lumileds, and Toyoda Gosei, while also leveraging Lumileds’ two-decade legacy in the global market.

 

 

Lumileds develops LED technology for automotive, display, and other markets


“This transaction is the next step of our ongoing transformation. As the LED industry evolves and continues to mature, I am confident that Lumileds International will continue to be successful and accelerate its growth under the new ownership,” said Steve Barlow, CEO of Lumileds International. The transaction is expected to close by the first quarter of 2026.

Lumileds describes itself as “a leader in LED technology, innovation, and solutions for the automotive, display, illumination, mobile, and other markets where light sources are essential. Our approximately 3,300 employees operate in over 15 countries to partner with our customers to deliver solutions for lighting, safety, and well-being.”

San’an Optoelectronics is listed on the Shanghai Stock Exchange with annual revenue of RMB16.1 billion (approx. USD 2.2 billion) for the financial year ended 31 December 2024 and a market capitalization of approximately RMB 60 billion (USD 8.4 billion) as of August 1st.

Inari Amertron Berhad is listed on the Malaysian Stock Exchange with annual revenue of RM1.5 billion (approx. USD 350 million) for the financial year ended 30 June 2024 and a market capitalization of approximately RM 7.8 billion (USD1.8 billion).

 


Tokyo Inst. of Science achieves ‘lowest’ operating voltage for white OLEDs


A new white organic light-emitting diode operates at under 1.5 volts, report researchers from Institute of Japan. By using triplet–triplet annihilation to generate blue light at low voltage and adding in yellow and sky-blue dopants, the research team achieved efficient white emission.
Although OLEDs offer high visual quality, they still suffer from a key limitation—white OLEDs have relatively high-power consumption—that has hindered their widespread adoption in smaller, battery-operated devices.

This power demand stems from the high voltage needed to produce white light. Current white OLED technology typically requires more than 2.5 V to operate, which is the voltage required to produce the blue light from which the white light is partially derived.

White OLEDs with extremely low turn-on voltage at 1.5 V

Fortunately, in a recent study, a research team led by Associate Professor Seiichiro Izawa from the Materials and Structures Laboratory at Institute of Science Tokyo, Japan, has achieved a breakthrough in white OLED technology. Their paper, which was published in the Journal of Materials Chemistry C, reports the development of a white organic electroluminescent device that operates at an unprecedentedly low voltage.

The team created low-voltage blue OLEDs using an upconversion process based on triplet–triplet annihilation (TTA). The strategy involves using a low voltage to drive the movement of negative and positive charges within a layered organic semiconductor device. When these charges meet and recombine, they produce excited “triplet states”. These can destroy each other through TTA to yield a higher-energy singlet state, which produces blue light as it decays.

The researchers introduced two differently colored dopants into the emissive layer of the semiconductor device to achieve the desired white light: a sky-blue dopant (Tbpe) and a yellow dopant (rubrene). The new white OLED boasts a turn-on voltage of less than 1.5 V, meaning that the device can be directly operated by a single 1.5-volt dry battery. “To the best of our knowledge, this is the lowest operating voltage reported to date for white OLEDs,” said Izawa.

Source: optics.org

Σχετικές προτάσεις
  • First 6-inch thin film lithium niobate photonic chip wafer pilot production line

    Recently, Shanghai Jiao Tong University Wuxi Photon Chip Research Institute (CHIPX) located in Binhu District, Wuxi City, has achieved a breakthrough - the first 6-inch thin film lithium niobate photon chip wafer has been produced on China's first photon chip pilot line, and high-performance thin film lithium niobate modulator chips with ultra-low loss and ultra-high bandwidth have been mass-produ...

    06-11
    Δείτε τη μετάφραση
  • Polarization of Laser Writing Waveguides Controlled by Liquid Crystal

    German researchers have developed a method for controlling and manipulating optical signals by embedding liquid crystal layers into waveguides created by direct laser writing. This work has produced devices capable of electro-optic control of polarization, which may open up possibilities for chip based devices and complex photonic circuits based on femtosecond write waveguides.Researcher Alexandro...

    2024-03-13
    Δείτε τη μετάφραση
  • Linear Pluggable Optical Device Alliance Definition Linear Pluggable Optical Device Specification

    A group of network, semiconductor, and optical companies formed the LPO MSA to develop the network equipment and optical module specifications required to implement a wide ecosystem of interoperable LPO solutions.These specifications address the industry challenges of reducing power consumption, cost, and latency while improving the reliability of high-speed optical interconnections.Accelink, AMD...

    2024-03-26
    Δείτε τη μετάφραση
  • Progress in the Study of Nonlinear Behavior of Platinum Selenide Induced by Strong Terahertz at Shanghai Optics and Machinery Institute

    Recently, the research team of the State Key Laboratory of Intense Field Laser Physics of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made progress in the research on the nonlinear behavior and mechanism of platinum selenide in terahertz band. The research team systematically studied the spectral and optical intensity characteristics of platinum selenide und...

    2024-05-23
    Δείτε τη μετάφραση
  • Fraunhofer IZM launches quantum cascade project to develop modular laser system

    Creating new laser systems for use in spectroscopy applications is a challenging and costly endeavor. In order to give even small and medium-sized enterprises access to such innovative technology, the Fraunhofer Institute for Reliability and Microintegration (IZM) co-launched the QuantumCascade project to develop a modular laser system for a range of multispectral analytics.This week the IZM repor...

    07-30
    Δείτε τη μετάφραση