Ελληνικά

The University of Illinois combines the light emitted by multiple VCSEL into a single coherent mode

629
2025-08-04 13:54:23
Δείτε τη μετάφραση

Today, VCSELs (vertical cavity surface-emitting lasers) are used in everything from computer mice to face-scanning hardware in smart phones. They are renowned for their ability to integrate seamlessly into semiconductor chips, VCSELs are still considered to be an active field of research, and many researchers believe there are still important applications waiting to be discovered.
The laboratory of Kent Choquette, a professor of electrical and computer engineering in Grainger College of Engineering at the University of Illinois Urbana-Champaign, has developed a new design in which light from multiple VCSELs is combined to form a single coherent pattern called a “supermode”.

As the researchers report in IEEE Photonics Journal, the result is a controllable pattern brighter than what is possible with an array of independent devices.

 



940 nm dual-cavity photonic crystal VCSEL array


‘Challenging VCSELs’

“VCSELs are more challenging to work with than other kinds of lasers because they naturally tend to emit light in many special patterns, or modes, so the central problem has been figuring out how to get the light to stay in the mode you want,” Choquette said.

“The design we explore in this study is noteworthy because it shows how to extend mode control across more than one VCSEL and use an array of them in tandem to get a single desired mode. With this level of cooperation across arrays of VCSELs, we’re confident that new uses for these devices will emerge.”

Ordinarily, VCSELs are individually controlled with electrical signals, making the problem of coordinating a coherent beam across laser cavities difficult. The researchers proposed a design that makes use of a photonic crystal connecting adjacent VCSELs. So, although they are electrically independent, they act in tandem optically. This makes it possible to control both cavities in a way that produces one of two pre-determined collective patterns, or supermodes.

The details of the design, including the use of a special “anti-guided” crystal to achieve the optical coupling, were studied by Dan Pflug, an Illinois Grainger Engineering graduate student in Choquette’s laboratory and the study’s lead author.

The Illinois team then turned the design over to the company Dallas Quantum Devices, where a working device was fabricated in a foundry-level process, demonstrating that the design can be practically realized.

“Our collaboration with Dallas Quantum Devices originates in a call from the National Science Foundation for Small Business Innovation Research proposals in high-speed VCSELs,” Choquette said. “I have known some of these people for over 20 years. It’s a case where what started out as informal exchanges has led to a long-term relationship.”

For Choquette, this work is a product of discovery and innovation for its own sake. He observed that this is often where some of the most important end uses for new technologies originate. “When I started working with VCSELs 30 years ago, the interest in them was purely academic,” he said. “But one day, I got a call from Microsoft, and laser computer mice entered the market. Now, everyone uses VCSELs every day. This is the reason we do research like this: applications aren’t always obvious, and the only way to know is to try it out.”

Source: optics.org

Σχετικές προτάσεις
  • Panasonic Launches 3D Short Pulse Fiber Precision Laser Marking Machine LP-ZV

    Recently, Panasonic has launched the latest laser marking technology product - the LP-ZV series, which can provide high-precision and high-efficiency laser marking.Panasonic claims that the LP-ZV series has set a new standard that can bring excellent speed and accuracy in operation, suitable for various applications such as marking text, graphics, barcodes, and 2D code.The company stated that the ...

    2023-11-08
    Δείτε τη μετάφραση
  • Laser technology helps wafer bonding, creating a cutting-edge laser system production factory

    Recently, Coherent LaserSystems, the global leader in laser and photon solutions, and Fraunhofer IZM-ASSID jointly announced that they have reached a strategic partnership to develop and optimize alternative bonding and debonding technologies for advanced CMOS and heterogeneous integrated applications (including quantum computing), in which laser technology plays a crucial role. It is reported t...

    2024-06-19
    Δείτε τη μετάφραση
  • Scientists at St. Andrews University have made significant breakthroughs in compact laser research

    Scientists at St. Andrews University have made significant breakthroughs in compact laser research after decades of hard work.Laser is widely used in fields such as communication, medicine, measurement, manufacturing, and measurement around the world. They are used to transmit information on the internet, for medical purposes, and even in facial scanners on mobile phones. Most of these lasers are...

    2023-10-04
    Δείτε τη μετάφραση
  • Scientists achieve extremely short laser pulses with a peak power of 6 terawatts

    RIKEN's two physicists have achieved extremely short laser pulses with a peak power of 6 terawatts (6 trillion watts) - roughly equivalent to the power generated by 6000 nuclear power plants. This achievement will contribute to the further development of attosecond lasers, for which three researchers were awarded the Nobel Prize in Physics in 2023. This study was published in the journal Nature Ph...

    2024-04-22
    Δείτε τη μετάφραση
  • Marvin Panaco launches the Mastersizer 3000 for laser diffraction particle size determination+

    Marvin Panaco, a subsidiary of Spectris plc located in Egham, Surrey, UK, announced the launch of its new laser diffraction particle size measurement instrument Mastersizer 3000+. Mastersizer 3000+utilizes integrated artificial intelligence and data science driven software solutions, providing method development support, data quality feedback, instrument monitoring, and troubleshooting recommendat...

    2024-03-22
    Δείτε τη μετάφραση