Ελληνικά

Research on High Strength and High Toughness TC11 Titanium Alloy with Multi Laser Coaxial Wire Feeding and Directed Energy Deposition

1004
2025-05-14 11:54:39
Δείτε τη μετάφραση

Researchers from Huazhong University of Science and Technology, AVIC Xi'an Aircraft Design and Research Institute, AVIC Xi'an Aircraft Industry Group Co., Ltd., Shanghai Aerospace Equipment Manufacturing General Factory Co., Ltd., State Key Laboratory of Aircraft Control Integration Technology, Beijing Xinghang Electromechanical Equipment Co., Ltd. and Nanjing Yingigma Automation Co., Ltd. reported on the research progress of high-strength and high toughness TC11 titanium alloy deposited by multi laser beam coaxial wire feeding directional energy, and the related research was published in Next under the title of "Multi laser beams directed energy disposition of a high strength and high strength TC11 titanium alloy with coaxial wire feeding". Materials.


Article focus:
Developed a new type of multi laser beam coaxial wire feeding processing head
Optimizing process parameters to achieve good formability of TC11 alloy
Revealed the mechanism of thermal gradient and heterogeneous nucleation


The wire feeding laser directed energy deposition (WLDED) additive manufacturing technology uses metal wire as raw material, which has the advantages of high material utilization and low pollution, and is suitable for efficient processing of large components. However, the traditional side axis wire feeding method has problems such as insufficient laser wire coupling and limited flexibility of the processing head, making it difficult to meet the manufacturing needs of complex parts. This study designed a multi laser beam coaxial wire feeding device for the preparation and analysis of high-strength and high toughness TC11 titanium alloy, a commonly used material for key load-bearing components in aviation. By optimizing parameters such as wire feeding speed (500 mm/min) and scanning speed (4 mm/s), the formability has been significantly improved. Research has shown that the unique thermal gradient (G) and solidification rate (R) characteristics of coaxial WLDED, as well as the laser wire coupling position, can significantly affect the microstructure evolution and typical directional mechanical properties in different regions; The synergistic effect of lower thermal gradient and heterogeneous nucleation brought by coaxial ribbon feeding plays a decisive role in refining the microstructure of materials. This elucidates the microstructural evolution mechanism and tensile performance improvement mechanism of multi laser beam WLDED process for coaxial machining heads.

Keywords: additive manufacturing; Microstructure; Mechanical properties; Laser directed energy deposition; tc11 alloy

 


Figure 1. Coaxial WLDED method: (a) Design of six laser beam coaxial processing head; (b) Schematic diagram of sedimentation process; (c) Physical processing head

Figure 2. Single channel deposition morphology with wire feeding speed of 200-400 mm/min and scanning speed of 1-4 mm/s

Figure 3. Study on the Characteristics of Single Channel Sedimentary Sections: (a) Definition of Geometric Features; (b) Surface morphology under different parameters; (c) Sectional morphology under different parameters

Figure 4. Distribution of geometric features of the melt path under different parameters (the red area is the key influencing factor): (a) width/height/melt depth; (b) Dilution rate; (c) Aspect ratio; (d) Contact angle

Figure 5. Multi layer sedimentation cross-section (parameters: (a) wire feeding 400 mm/min scanning 3 mm/s, (b) 500 mm/min scanning 4 mm/s, (c) 600 mm/min scanning 5 mm/s); (d) Effective sedimentary area; (e-g) Microhardness distribution of the corresponding sample (yellow for sedimentary layer, gray for matrix)

Figure 6. Block specimen: (a) Macroscopic morphology; (b) Grain size evolution

Figure 7. Sedimentary TC11 block: (a) IPF diagram; (b) Tensile performance and fracture morphology; (c-d) Polar diagram

This study used a novel coaxial WLDED process to prepare a widely used high-strength and high toughness TC11 titanium alloy. Through systematic research on deposition formability, microstructure, and mechanical properties, grain size control and promotion of columnar equiaxed crystal transformation (CET) were successfully achieved. The main conclusions are as follows:

(1) We have developed a multi laser beam coaxial wire feeding processing head, which can achieve uniform heating of wire and molten pool. By analyzing the effects of scanning speed, wire feeding speed, and peak power on forming characteristics such as dilution ratio, aspect ratio, and contact angle, a fitting calculation formula was established to determine the optimized process parameter window.

(2) Further optimize multi-layer printing parameters based on hardness changes and prepare bulk samples. The microstructure and grain size evolution in different regions are highly correlated with the WLDED process, which is determined by the R/G values unique to coaxial processes and the laser wire coupling position. Its typical mechanical properties are superior to traditional additive manufacturing technology.

(3) The current research focuses on single channel/multi-layer/block deposition under limited conditions. Subsequent studies should investigate the effects of heat treatment regimes and multi phase transformations on tissue properties to further enhance the engineering applicability of WLDED technology.

Source: Yangtze River Delta Laser Alliance

Σχετικές προτάσεις
  • German team develops and promotes laser technology for formable hybrid components

    Scientists from the Hanover Laser Center (LZH) in Germany are studying two laser based processes for producing load adapted hybrid solid components.From a transaction perspective, mixing semi-finished products can help save materials and production costs, but if the components that need to be replaced are made of expensive materials, these materials need to meet high requirements in future use, su...

    2023-08-16
    Δείτε τη μετάφραση
  • Multiple international laser companies continue to increase investment in the Chinese market

    In early spring of 2025, China's laser industry once again attracted the attention of global laser giants, ushering in a new wave of international investment boom.After several global laser giants accelerated their layout in China in 2024, in February 2025, Carl Zeiss from Germany and Bystronic from Switzerland, two global giants in the optical and laser fields, also announced significant expansio...

    02-15
    Δείτε τη μετάφραση
  • Filatek: Leading the Development of Laser, Shining "Additive Prince"

    In recent years, the field of laser technology has received widespread attention from the outside world. At that time, the Munich Shanghai Electronic Production Equipment Exhibition was successfully held in Shanghai, and Suzhou Feilaitek Laser Technology Co., Ltd. (hereinafter referred to as "Feilaitek"), a leading enterprise in the field of industrial laser 3D dynamic focusing systems, appeared a...

    2024-04-12
    Δείτε τη μετάφραση
  • Bodor Laser has been approved by Shandong Engineering Research Center

    Recently, the Development and Reform Commission of Shandong Province announced the list of Shandong Engineering Research Centers for 2024. bodor Laser has been recognized as the "Advanced Laser High end Intelligent Manufacturing and Application Shandong Engineering Research Center" and is the only enterprise in the laser intelligent manufacturing industry to be listed.As an important component of ...

    2024-07-17
    Δείτε τη μετάφραση
  • The 20th Wuhan Optoelectronics Expo 2025 to Open Grandly

    From May 15 to 17, 2025, the 20th Wuhan Optoelectronics Expo will be held grandly at the China Optics Valley Convention and Exhibition Center in Wuhan. With the theme "Light Connects Everything, Intelligence Leads the Future," this year's expo will focus on six major fields: laser technology and applications, optics and precision optics, information communication and semiconductors, automotive opt...

    03-14
    Δείτε τη μετάφραση