Ελληνικά

BWT 969nm semiconductor pump source

341
2025-05-09 11:31:01
Δείτε τη μετάφραση

Semiconductor laser pump sources, especially those with a wavelength of 969nm, have become the preferred choice for high-power/high peak energy disc lasers due to their reduced quantum losses and heat generation.

The 3000W 969nm fiber coupled semiconductor laser system launched by BWT uses 800 μ m NA0.22 fiber to output flat top optical energy distribution, combining lightweight and excellent optical performance, and can be widely used in scientific research and other fields.

In terms of design, BWT combines six 500 watt modules to achieve a 3000W power output scheme (as shown in the figure below). By adopting CTC chip integration technology, the system has the characteristics of miniaturization and lightweight, with a total size of only 80 * 482 * 521mm ³, a weight of only 24kg, and equipped with QBH output.


Figure 1. Fiber Bundle Output 3000W@969nm Lockwave


The system can achieve an output power of 300-3000W within the current range of 5-30A, with a center wavelength of 969nm and a side mode suppression ratio of over 25dB; When the power reaches 3000W, the edge mode suppression ratio is about 40dB, and the full width at half maximum of the spectrum is less than 0.3nm. To achieve a near flat top distribution of fiber output energy, BWT uses special techniques to improve energy uniformity, and the measured data shows a super Gaussian order greater than 4 (as shown in the figure below).


Figure 2. Power of 3000W semiconductor laser system

 


Figure 3. 3000W 969nm semiconductor laser system


At present, BWT has a full range of semiconductor laser products (380nm-1940nm, 2mW-6kW), with laser pump sources covering the full power range of 10W to 1000W in the 8XXnm and 9XXnm series. In the future, we will launch higher power semiconductor laser systems to meet the demand of disc lasers for amplifying and outputting higher pulse energy in ultrafast lasers.

Source: BWT

Σχετικές προτάσεις
  • Polarization polariton topology pointing towards a new type of laser

    Semi light, partially matter quasi particles, known as excitons polaritons, can easily bypass obstacles and condense into a single coherent state - both of which are characteristics of topological insulators. Researchers from the United States and China have developed a new technology to manufacture microcavities from chloride based halide perovskites. They expect this work to lead to a new type o...

    2024-05-30
    Δείτε τη μετάφραση
  • New type of "dynamic static dual sensing" charge coupled phototransistor

    With the development of cutting-edge technologies such as automatic guidance and embodied intelligence, machine vision has put forward higher requirements for image acquisition, requiring precise recording of static images and the ability to sensitively capture dynamic changes in the scene. The existing dynamic and active pixel sensor technology integrates two functions: dynamic event detection an...

    04-17
    Δείτε τη μετάφραση
  • Chip based comb laser illumination and unlocking of new applications

    Researchers have shown that dissipative Kerr solitons (DKS) can be used to create chip based optical frequency combs with sufficient output power for optical atomic clocks and other practical applications. This progress may lead to chip based instruments being able to perform precise measurements that were previously only possible in a few specialized laboratories.Gr é gory Moille from the ...

    2023-08-30
    Δείτε τη μετάφραση
  • Ultra fast laser nova PulseX Laser completes over 10 million yuan of financing

    PulseX Laser, a rising star in the field of ultrafast lasers, has recently completed a financing of over 10 million yuan, with this round of financing exclusively invested by Changlei Capital.As a representative of the forefront of technology today, ultrafast lasers play an important role in many industries. In the field of material processing, ultrafast lasers, with their ultra short pulse width ...

    2024-07-09
    Δείτε τη μετάφραση
  • Relevant teams of the Chinese Academy of Sciences breakthrough the application difficulties of ultra compact gas laser system in special scenarios

    Recently, Liang Xu's team from the Laser Center of Anguang Institute, Chinese Academy of Sciences, Hefei Institute of Materia Medica, conducted research on corona discharge fluid control and its application in the gas laser system, proposed an electric field flow field coupling analysis model suitable for multi pin corona discharge scenarios, and revealed the flow velocity distribution characteris...

    2024-07-20
    Δείτε τη μετάφραση