Ελληνικά

Researchers develop new techniques for controlling individual qubits using lasers

856
2023-09-12 15:01:26
Δείτε τη μετάφραση

Researchers at the University of Waterloo's Institute for Quantum Computing (IQC) have developed a new technique that uses lasers to control individual qubits made from the chemical element barium. The breakthrough is a key step toward realizing the capabilities of quantum computers.

The new technique uses thin glass waveguides to segment and focus laser beams with unprecedented precision. Each focused laser beam can be adjusted independently, making it possible to reliably manipulate individual qubits. Previous methods could not achieve this level of control.

One of the main advantages of the new technology is its ability to limit crosstalk, which is interference between adjacent ions. The researchers were able to reduce the crosstalk to just 0.01 percent of its relative strength, making it one of the best in the quantum world. This means that the laser beam can target specific ions without affecting its neighbors.

The researchers focused on the barium ion, which has the right energy state to be used as the zero and one energy levels of qubits. Unlike other atom types, barium ions can be manipulated using visible green light rather than higher energy ultraviolet light. This allows researchers to take advantage of commercially available optical techniques that were previously unavailable at ultraviolet wavelengths.

The team developed a waveguide circuit that divides a single laser beam into 16 different light channels. Each channel is then sent to its own fibre-based modulator, which individually controls the intensity, frequency and phase of each laser beam. A series of optical lenses are then used to focus the laser beam to a narrow gap.

The researchers monitored each laser beam with precise camera sensors, confirming their precise focusing and control. This highly accurate and flexible control system sets a new standard in academia and industry.

The ultimate goal of this research is to build barium ion quantum processors, because ions are the same natural qubits that do not need to be manufactured. The focus now is on finding ways to effectively control these ions.

Source: Laser Network

Σχετικές προτάσεις
  • The United States promotes the development of next-generation EUV lithography technology

    LLNL has long been a pioneer in the development of EUV lithography technology.A laboratory located in California will lay the foundation for the next development of extreme ultraviolet (EUV) lithography technology. The project is led by Lawrence Livermore National Laboratory (LLNL) and aims to promote the next development of EUV lithography technology, centered around the laboratory's developed dr...

    01-06
    Δείτε τη μετάφραση
  • Old brand laser manufacturers win major orders in the nuclear industry

    Recently, Laser Photonics Corporation (LPC) claims to have successfully secured an order from ES Fox Limited to provide them with the CleanTech 500-CTHD laser cleaning system.ES Fox Limited, founded in 1934, is recognized as a leader in the industrial manufacturing and construction industry in Canada. Its nuclear service department has invested millions of hours to support the nuclear power indust...

    2024-05-28
    Δείτε τη μετάφραση
  • Jenoptik invests 100 million euros to open new factory

    On May 30th, Jenoptik announced on its official WeChat account that after approximately two and a half years of construction, its new factory in Dresden, Germany, with an investment of nearly 100 million euros, has officially opened. This is the largest single investment project in Jenoptik's recent history.Jenoptik President and CEO Dr. Stefan Traeger stated that this new factory will make Dresde...

    06-05
    Δείτε τη μετάφραση
  • Fraunhofer ILT develops laser beam shaping platform to optimize PBF-LB process

    Recently, the German research institution Fraunhofer ILT team is collaborating with the Department of Optical Systems Technology (TOS) at RWTH Aachen University to develop a testing system aimed at studying complex laser beam profiles using a new platform. This platform can construct customized beam profiles for laser powder melting (PBF-LB) 3D printing, thereby improving part quality, process sta...

    2024-12-23
    Δείτε τη μετάφραση
  • RTX Raytheon Company will develop ultra wide bandgap semiconductors for ultraviolet lasers

    The UWBGS program will develop and optimize ultra wide bandgap materials and manufacturing processes for the next revolution in the semiconductor electronics field.US military researchers need to develop new integrated circuit substrates, device layers, junctions, and low resistance electrical contacts for the new generation of ultra wide bandgap semiconductors. They found a solution from RTX comp...

    2024-09-30
    Δείτε τη μετάφραση