Deutsch

Acta: Revealing the mechanism of defect formation in additive manufacturing

1082
2025-02-21 15:13:01
Übersetzung anzeigen

Main author: Yanming Zhang, Wentao Yana*
The first unit: National University of Singapore
Published Journal: Acta Materialia

Research background
Industry pain point: Although laser powder bed melting (LPBF) technology can manufacture complex components, the lack of consistent product quality is still the core bottleneck restricting its industrial application. Research has shown that up to 35% of process defects are directly related to powder splashing and entrainment.
Scientific challenge: Traditional experimental methods are difficult to capture microsecond level dynamic processes, and existing numerical models lack accurate descriptions of the gas liquid solid three-phase coupling effect, resulting in unclear mechanisms for defect formation.
Innovation breakthrough point: This study establishes for the first time a CFD-DEM-CALPHAD multi physics field coupling model, breaking through the limitations of traditional simulation methods in modeling phase transition kinetics and metallurgical reactions.

research contents 
Modeling method:
Coupling Computational Fluid Dynamics (CFD) and Discrete Element Method (DEM) to achieve bidirectional coupling between molten pool flow and powder motion
Integrate CALPHAD thermodynamic database to accurately describe metallurgical reactions in multi material systems
Develop a steam jet dynamic model to reproduce the microstructure evolution of Knudsen layer


Figure 1: Schematic diagram of computational domain and mesh.


Experimental verification:
Adopting multiple material systems such as 316L stainless steel and NiTi alloy
Combining high-speed schlieren imaging with ultrafast X-ray observation technology
Build a 4 million grid computing domain, with a single case computation time of 7 days (i9-12900K)


Figure 2: Multiphase flow in the melting process.


Research results
Thermal Splash Dynamics:
70% of the splashing comes from the molten powder in the steam jet zone (Type I)
20% is generated by sudden fragmentation of the molten pool (Type II)
10% from melt pool fluctuations (Type III)


Figure 3: Formation of hot spatters.


Defect formation mechanism:
150 μ m aggregates entering the laser action zone can lead to an 18% increase in porosity
The defect size of Ti particle inclusions in multi material LPBF reaches 45-80 μ m
Splashing momentum changes the flow field at the tail of the molten pool, causing element segregation (Ni segregation degree reaches 62%)


Figure 4: Large agglomeration formed by the coalescence of hot spatters.


Defect criteria:
τ<τc
The critical time τ _c decreases from 157 μ s to 67 μ s as the scanning speed increases


Figure 5: “Chain reaction” of defects induced by large agglomerations.


Deep insight
▶  Technological innovation value:
Establish a fully coupled dynamic model of gas melt pool powder with a resolution of 6 μ m
Revealing the chain reaction mechanism of thermal splashing agglomeration ("defect avalanche" effect)
Propose a prediction criterion for particle inclusion defects based on metallurgical reaction kinetics

▶  Engineering application inspiration:
Developing online monitoring algorithm: implementing defect warning through real-time ratio of τ/τ _c
Optimizing inert gas flow field: controlling the spatial distribution of splashing and redeposition
Multi material process design: Avoiding the combination of liquid-solid phase inversion materials

▶  Current challenges:
The high fidelity model has a high computational cost (single orbit simulation takes 7 days)
The impact of cross airflow on actual working conditions has not been modeled yet
Ultra fine powder (<20 μ m) motion trajectory prediction deviation>12%

▶  Future direction:
Developing GPU accelerated heterogeneous computing framework
Study on the metallurgical behavior of splash matrix interface
Exploring new technologies for controllable utilization of splashes (such as in-situ alloying)

Source: Yangtze River Delta Laser Alliance

Ähnliche Empfehlungen
  • LASER World of PHOTONICS CHINA- 20th Anniversary Celebration Coming Soon!

    The Annual Grand Event for the Laser, Optics, and Optoelectronics Industry in AsiaLASER World of PHOTONICS CHINA20th Anniversary Celebration Coming Soon!📅 March 11-13📍 Shanghai New International Expo Centre (SNIEC), Entrance Hall 3🏢 Halls: N1-N5, E7-E4💡 1,400+ exhibitors across over 100,000 square meters Visitor Opening HoursDay 1: March 11 (Tuesday) 9:00 - 17:00Day 2: March 12 (Wednesday)...

    03-10
    Übersetzung anzeigen
  • Multiple international laser companies continue to increase investment in the Chinese market

    In early spring of 2025, China's laser industry once again attracted the attention of global laser giants, ushering in a new wave of international investment boom.After several global laser giants accelerated their layout in China in 2024, in February 2025, Carl Zeiss from Germany and Bystronic from Switzerland, two global giants in the optical and laser fields, also announced significant expansio...

    02-15
    Übersetzung anzeigen
  • NKT Photonics utilizes fiber lasers to achieve deep space communication links

    On July 7, the European Space Agency (ESA), established Europe’s first deep-space optical communication link with NASA’s Psyche mission using a high-power fiber laser system supplied by NKT Photonics, a subsidiary of Hamamatsu.NKT’s announcement stated, “This achievement, conducted with NASA/JPL’s Deep Space Optical Communications (DSOC) demonstrator, marks a significant leap forward in high-data-...

    07-21
    Übersetzung anzeigen
  • Tiedra Famaceutica uses Macsa ID's SPA2 CB laser marking system

    Tiedra Famaceutica was founded by members of the Tiedra family in 2003 and is a manufacturer of contact lenses, health and ophthalmic products, as well as diagnostic instruments used in optometry and ophthalmic clinics.Before installing the SPA2 CB laser model for Macsa id, Tiedra used a pantograph, which is a quadrilateral system composed of hinged rods. This manual process provides limited marki...

    2023-12-14
    Übersetzung anzeigen
  • Laser-induced graphene sensor can diagnose diabetes through breath samples

    In the U.S., one in five of the 37 million adults who has diabetes is not aware of it (according to the U.S. CDC – Centers for Disease Control & Prevention). Current methods of diagnosing diabetes and prediabetes usually require a visit to a doctor’s office or lab work, both of which can be expensive and time-consuming. Now, diagnosing diabetes and prediabetes may be as simple as breathing. ...

    09-08
    Übersetzung anzeigen