Deutsch

The United States has successfully developed a full 3D printed electric spray engine

981
2025-02-20 15:02:34
Übersetzung anzeigen

The fully 3D printed electric spray engine is suitable for small satellite in orbit maneuver, and its production cost is only a small part of that of traditional thrusters.


Image source: Massachusetts Institute of Technology, USA


The Massachusetts Institute of Technology team recently demonstrated an electric spray engine made entirely of 3D printing technology, which can be propelled by emitting droplets. This innovative device not only produces quickly, but also has a much lower cost than traditional thrusters. It utilizes commercially available 3D printing materials and technology, and can even complete printing in space. The relevant paper was published in the journal Advanced Science.

The working principle of the electric spray engine is to apply an electric field to the conductive liquid to generate a high-speed micro droplet jet to propel the spacecraft. This type of micro engine is particularly suitable for small satellites, such as cube satellites. Compared with chemical fuel rockets, electric spray engines are more efficient in the use of propellants, so they are more suitable for performing precise in orbit maneuver tasks. Although the thrust generated is small, the required thrust level can be achieved by paralleling multiple electric spray launchers.

The team has developed a modular process that combines two 3D printing methods, solving the challenges encountered in manufacturing complex equipment composed of macroscopic and microscopic components. They use restoration photopolymerization printing (VPP) technology, including digital light processing technology, to shine light onto photosensitive resin through a chip sized projector and solidify layer by layer to form high-resolution 3D structures. In addition, they also designed a clamping mechanism to connect various components, ensuring the water tightness of the equipment. This allows astronauts to directly print satellite engines in space without relying on equipment sent from Earth.

The printed thruster contains 32 electric spray emitters, which work together to ensure stable and uniform propellant jet. The final prototype equipment is comparable to or even better than existing equipment in terms of thrust performance.

Further research has shown that by adjusting the pressure of the propellant and the voltage applied to the engine, the droplet flow rate can be controlled to achieve a wider range of thrust output.

The researchers said that this method simplified the system design, reduced the complex pipeline, valve or pressure signal network, and provided a more portable, economical and efficient electric spray propulsion solution.

The 3D printed electric spray engine can almost mark an important breakthrough in space propulsion technology. Due to its ability to produce quickly and customize, it can quickly adjust designs according to specific needs in space missions, greatly improving execution flexibility and response speed. Especially in emergency repairs or the need for rapid deployment of new satellites, this immediate production capability is particularly important. Being able to directly manufacture engines in space means that future space missions will no longer rely solely on equipment sent from Earth, but will be able to self repair and upgrade in orbit. Therefore, this innovation not only significantly reduces production costs and time, but also brings more flexible and efficient solutions for future space exploration.

Source: laserfair

Ähnliche Empfehlungen
  • TRUMPF machine cooler saves 50 percent energy

    Ditzingen, 05. March 2025 – At its in-house exhibition INTECH, high-tech company TRUMPF is showcasing a new cooler for its laser cutting machines. The new unit is capable of reducing energy consumed during the cooling process and uses fifty percent less energy than conventional solutions. Unlike conventional coolers, the main components of this new solution— such as pumps, fans and compressors— ar...

    03-14
    Übersetzung anzeigen
  • Micro active vortex laser

    Recently, Dong Yibo, from the Photonic Chip Research Institute of Shanghai University of Technology, published his research findings titled "Nanoprinted Diffractive Layer Integrated Vertical Cavity Surface Emitting Vortex Lasers with Scalable Topological Charge" as the first author in the internationally renowned journal Nano Letters.This achievement was jointly completed by the team of academicia...

    2023-10-24
    Übersetzung anzeigen
  • TAU Systems upgrades the University of Texas desktop laser to a peak power of 40 terawatts

    TAU Systems, a manufacturer of ultra fast compact laser plasma accelerators, announced today that it has successfully upgraded the existing desktop terawatt laser (UT 3) at the University of Texas to a new and improved performance that provides power for compact particle accelerators. The upgraded UT 3 driver laser can now generate ultra short pulses with a peak power of 40 terawatts.This upgrade ...

    2023-08-21
    Übersetzung anzeigen
  • Enlightra and DESY Hamburg developed an improved and scalable comb laser

    Laser technology startup Enlightra collaborates with DESY Hamburg to develop and design more stable and efficient comb lasers. This work demonstrates a microresonator with programmable synthetic reflection, providing tailored injection feedback for driving lasers. This technology has significantly improved compared to traditional self injection locking technology and can be produced using standard...

    2024-01-26
    Übersetzung anzeigen
  • Received NASA contract! Breakthrough blue light laser technology leads the space power revolution

    On May 6th, NUBURU, a leading enterprise in high-power and high brightness industrial blue laser technology, announced that the company has been awarded a second phase contract worth $850000 by the National Aeronautics and Space Administration (NASA) to promote blue laser power transmission technology as a unique solution that significantly reduces the size and weight of equipment required for lun...

    2024-05-08
    Übersetzung anzeigen