Deutsch

The semiconductor laser market is expected to reach $5.3 billion by 2029

580
2024-12-03 13:57:36
Übersetzung anzeigen

Nowadays, laser technology is widely used in various traditional and emerging fields, including optical communication, material processing, consumer equipment, automotive sensing and lighting, display technology, medical applications for treatment and diagnosis, as well as aerospace and defense.

Especially in the semiconductor laser market, it is expected to grow from $3.1 billion in 2023 to $5.2 billion in 2029, with a compound annual growth rate (CAGR) of 9% during this period. This growth will be driven by rapid technological advancements, increasing demand from multiple industries, and the push to achieve higher performance at lower costs. The main trends shaping the semiconductor laser market include the expansion of laser applications, the shift towards compactness, energy efficiency, and solutions, as well as the integration of various technology platforms such as SOI, SiN, InP, and TFLN. At the same time, geopolitical factors and supply chain challenges are prompting manufacturers to adopt more flexible production strategies. Overall, driven by innovation in both mature and emerging markets, the semiconductor laser industry is expected to achieve significant growth.

 


The semiconductor (SC) laser industry constitutes the core of the photonic ecosystem. Although SC lasers have been widely adopted in communication and sensing applications, this photon technology is a challenging market for newcomers. SC laser manufacturers operate at different integration levels based on their knowledge and foundry capabilities, and must strategically choose segmented markets or applications based on their internal capabilities. The wide range of applications requires unique laser system specifications, which can affect the design of SC laser chips. In addition, there is fierce competition among direct diodes, fiber lasers, DPSSL, OPSL, and gas lasers in terms of technological level.

Therefore, the SC laser industry is highly dispersed and diversified, and each application requires a specific supply/value chain. Manufacturers must adopt different strategies to enter different segmented markets. The leading SC laser manufacturer implements vertical integration, managing all steps from epitaxial and front-end (FEOL) processing to back-end (BEOL) and module assembly or laser subsystem construction. Some even specialize in producing laser machinery for material processing applications.

VCSEL technology is rapidly developing, and companies such as Lumentum, Coherent, and Trumpf have improved power density through NIR multi junction design, increasing from 5-6 junctions to 8 by 2024. These lasers were initially used in automobiles and are now expanding into consumer and industrial markets. Despite technological challenges, efforts to extend GaAs VCSEL from NIR to SWIR (including wafer fusion technology) still show promise, while GaN based visible light VCSEL is still in the research and development stage due to performance limitations and low market demand. In the field of optical communication, VCSEL is developing from 100G/lane to 200G/lane, and the grand goal for the future is 400G/lane.

Similarly, EEL technologies such as DML, EML, and CW-DFB are expected to achieve 200G/lane by the end of 2024. FP and QCL lasers continue to dominate the industrial, medical, and automotive fields, with the goal of achieving a power output of 20W by 2026 to help reduce system costs. In the field of automotive LiDAR, EEL faces competition from advanced VCSEL and emerging FMCW LiDAR technologies. Driven by artificial intelligence driven optical communication, it is expected that by 2029, the demand for photonics integrated circuits (PIC) from SC lasers will reach a market share of 5%. However, due to continuous advancements in power, efficiency, and wavelength diversity, discrete lasers still remain competitive.

Source: Yangtze River Delta Laser Alliance

Ähnliche Empfehlungen
  • BLM Group launches a new LT12 laser tube cutting system

    Recently, BLM Group in the United States has launched a new LT12 laser tube system, which performs well in cutting light and heavy pipes and profiles, and can handle materials with a diameter of up to 305 millimeters.According to the company, compared to other similar machines, the LT12 laser tube system reduces cutting time by up to 55% when cutting materials with the same maximum diameter, signi...

    2024-04-18
    Übersetzung anzeigen
  • Ultraviolet spectroscopy: a leap in accuracy and precision under extremely low light levels

    Ultraviolet spectroscopy plays a crucial role in the study of electronic transitions in atoms and rovibronic transitions in molecules. These studies are crucial for the testing of fundamental physics, quantum electrodynamics theory, determination of fundamental constants, precision measurements, optical clocks, high-resolution spectroscopy supporting atmospheric chemistry and astrophysics, and str...

    2024-03-08
    Übersetzung anzeigen
  • Overview: High throughput preparation of alloy composition design in additive manufacturing

    Researchers from the New Materials Technology Research Institute of Beijing University of Science and Technology and the Beijing Modern Transportation Metal Materials and Processing Laboratory reported a review of high-throughput preparation of alloy composition design in additive manufacturing. The relevant research is titled "High throughput preparation for alloy composition design in additive m...

    2024-07-08
    Übersetzung anzeigen
  • An efficient femtosecond pulse amplification technique for extracting the maximum stored energy in fiber laser amplifiers

    The well-known journal Optica published a paper in November 2024 titled "Near complete extraction of maximum stored energy from large core fibers using coherent pulse stacking amplification of femtosecond pulses"The authors of the paper were the University of Michigan, Lawrence Berkeley National Laboratory, Peking University, and the German Institute of Synchrotron Radiation.The specific technique...

    2024-11-13
    Übersetzung anzeigen
  • NLIGHT announces financial performance for the fourth quarter and full year of 2024

    Recently, nLIGHT, a manufacturer of high-power semiconductors and fiber lasers, announced its financial performance for the fourth quarter and full year of 2024.financial summaryTotal revenue: 198.5 million US dollars, a decrease from 209.9 million US dollars in 2023, due to a decline in sales in the laser product department.Operating loss: A loss of $65.6 million, compared to a loss of $46.8 mill...

    03-04
    Übersetzung anzeigen