Deutsch

French laser giant's profits decline, laser radar business restructuring

624
2024-10-09 13:54:03
Übersetzung anzeigen

Recently, Marvel Fusion, a pioneer in the field of laser fusion, successfully raised 62.8 million euros (approximately 70.3 million US dollars) in funding. This funding will provide strong impetus for its fusion technology demonstration on existing laser equipment and accelerate the comprehensive technology validation process at its facility in Colorado, with the goal of achieving this milestone by 2027.

 



This financing is led by HV Capital and has received support from several well-known investment institutions, including b2venture, Bayern Kapital, Deutsche Telekom, Earlybird, SPRIND, and Tengelmann Ventures. Of particular note is that Marvel Fusion has also been favored by the European Innovation Council, with a grant of 2.5 million euros and the prospect of receiving an additional equity investment of up to 15 million euros (pending approval), undoubtedly adding a significant amount to the company's financing journey.

In addition, Marvel Fusion is honored to have been selected for the accelerator program jointly launched by the European Innovation Council and the Small and Medium Enterprise Executive Agency, which aims to support the expansion of its fuel target production scale through a grant of 2.5 million euros and may introduce up to 15 million euros in equity investment as further assistance.

As one of the explorers in the field of inertial confinement fusion, Marvel Fusion's approach aligns with the advanced technology path of the US Department of Energy's National Ignition Facility (NIF), which has validated the net energy gain of laser nuclear fusion in 2022, setting an important milestone for the entire industry. However, Marvel Fusion, with its cutting-edge laser technology, is committed to improving the power and efficiency of lasers, surpassing the limitations of NIF based on old designs.

The company is partnering with Colorado State University to rapidly build a demonstration plant, with the core goal of validating its fusion technology competitiveness through two 100 joule laser systems. These lasers will accurately bombard nanostructured targets at ultra-high speeds (one billionth of a second per second), releasing high-energy positive ions through photon stripping, and triggering fusion reactions.

The hybrid fuel strategy chosen by Marvel Fusion (mainly composed of hydrogen and boron) demonstrates its flexibility and foresight in fuel selection. Moritz von der Linden emphasized that this strategy facilitates adjusting fuel combinations according to future technological developments.

Compared to the complex fuel particle preparation process of NIF (which requires gold lining wrapping and takes two weeks), Marvel Fusion's fuel and target design are more suitable for large-scale production. Its fuel remains solid at room temperature, easy to handle, and the target structure uses silicon material, greatly simplifying the production process and cost.

Even more exciting is that Marvel Fusion is able to efficiently produce nanoscale targets on standard 300mm wafers using mature semiconductor lithography technology, with each wafer capable of producing approximately 5000 targets and sizes controlled between 50 and 80 nanometers. This innovation not only reduces production costs, but also accelerates the pace of technology towards commercialization.

Looking ahead, the first prototype of Marvel Fusion is expected to be released between 2032 and 2033. The prototype will integrate hundreds of kilojoule level lasers, each capable of emitting about 10 times per second, marking another major breakthrough for the company in the field of laser fusion.

Source: OFweek

Ähnliche Empfehlungen
  • Toshiba has developed the world's highest precision 99.9% LiDAR technology

    Recently, Toshiba announced that in the field of LiDAR lidar for distance measurement, it has developed a technology that can track vehicles, people, and other objects with 99.9% accuracy, achieving the world's highest accuracy. And only using LiDAR to collect data can achieve 98.9% object recognition.In addition, the detection distance in rainstorm and dense fog environments has been increased by...

    2023-10-06
    Übersetzung anzeigen
  • New super-resolution microscopy imaging technology: rapid imaging of neurons

    The research group led by Wang Kai from the Center for Excellence in Brain Science and Intelligent Technology of the Chinese Academy of Sciences has published a research paper titled "Super solution imaging of fast morphological dynamics of neurons in eating animals" online in Nature Methods. The team has developed a new type of super-resolution microscopy imaging technology, which solves the two ...

    2024-12-04
    Übersetzung anzeigen
  • 253 million US dollars! This Canadian medical fiber optic sensor manufacturer will be acquired

    Recently, Haemantics Corporation, which focuses on providing innovative medical solutions with proprietary optical technology, announced that the company has reached a final agreement. According to the agreement, Haemonics will acquire all outstanding shares of Canadian fiber optic sensor manufacturer OpSens for CAD 2.90 per share.This is an all cash transaction with a fully diluted equity value o...

    2023-10-18
    Übersetzung anzeigen
  • Coherent Company Announces the Launch of High Power Non Cooled G10 Pumped Laser Module for Submarine and Ground Applications

    Coherent, a leading supplier of high-performance optical network solutions, announced today the launch of a new high-power non cooled pump laser module based on the latest G10 series semiconductor laser tube technology. These new modules are specifically developed for high reliability submarine applications as well as single chip and dual chip ground applications.The new non cooled pump laser modu...

    2024-03-23
    Übersetzung anzeigen
  • Patterned waveguide enhanced signal amplification within perovskite nanosheets

    Researchers at Busan National University, led by Kwangseuk Kyhm, Professor of Ultra Fast Quantum Optoelectronics from the Department of Optics and Mechatronics, are enhancing signal amplification inside cesium bromide lead perovskite nanosheets through patterned waveguides.Perovskite is a highly attractive material in solar cell applications, but its nanostructure is now being explored as a new la...

    2024-01-10
    Übersetzung anzeigen