Deutsch

Latest breakthrough! 3500W free output blue semiconductor laser

378
2024-09-03 13:51:31
Übersetzung anzeigen

The 3500W free output blue semiconductor laser beam is output in a free space manner, with a rectangular spot directly acting on the material surface without the need for fiber optics or laser processing heads. This laser has a wavelength of 455 ± 10nm, with continuously adjustable power and a maximum output power of over 3500W. It is mainly used for non-ferrous metal cladding, quenching, etc., to greatly improve processing efficiency and quality.

Figure 1: 3500W Free Output Blue Light Semiconductor Laser Cladding Sample

Experiment 1


Figure 2 (a-e) OM images of a single layer at different powers; (f) Geometric dimensions; (g) Fusion efficiency; (h) Comparison of fusion efficiency and other research results; (i) Schematic diagram of high-power infrared laser and (j) high-power blue laser processing

The Institute of Special Materials at Shanghai Jiao Tong University developed a 3500W, rectangular spot (7.5 mm2) blue laser additive manufacturing equipment based on Guangdong Institute of Hard Science and Technology and Zhuo Jie Laser. Using directional energy deposition technology, pure copper was successfully deposited on Inconel 718 chromium nickel iron alloy substrate, achieving a cladding efficiency of 62.84 mm2/s.

——Achieving ultra-high efficiency in directed energy deposition of pure copper on Inconel 718 substrate with a 3500 W blue laser,Materials Letters,Volume 372,2024.

Experiment 2

Figure 3 (a) B-LMD process (b) B-LMD process schematic diagram

 



Figure 4 (c) Comparison of tensile properties between B-LMD pure copper and other additive manufactured pure copper

The New Materials Research Institute of Guangdong Academy of Sciences, based on the 3500W, rectangular spot (7.5 mm2) blue laser additive manufacturing equipment developed by Guangdong Institute of Science and Technology and Zhuojie Laser, successfully deposited pure copper material on 316L stainless steel substrate through laser metal deposition process, with a density of 97.9%, tensile strength of 244 ± 9 MPa, yield strength of 158 ± 6MPa, all of which are the highest reported values so far. The elongation at break can reach 14.7 ± 0.8%, and the comprehensive performance is better than that of pure copper samples prepared by SLM and MEAM processes.

——Comprehensive study of microstructural evolution and strengthening mechanism of high-performance pure copper prepared by blue laser metal deposition (B-LMD), Materials Science and Engineering: A.

Source: KCTII Institute of Technology

Ähnliche Empfehlungen
  • New photonic nanocavities open up new fields of optical confinement

    In a significant leap in quantum nanophotonics, a team of European and Israeli physicists introduced a new type of polarized cavity and redefined the limits of light confinement. This groundbreaking work was detailed in a study published yesterday in Natural Materials, showcasing an unconventional photon confinement method that overcomes the traditional limitations of nanophotonics.For a long time...

    2024-02-12
    Übersetzung anzeigen
  • Exail acquires laser company Leukos

    On January 6, 2025, Exail acquired Leukos, a laser company specializing in advanced laser sources for metrology, spectroscopy, and imaging applications. The financial terms of this acquisition have not been disclosed yet. Leukos will operate as a subsidiary of Exail, retaining its product portfolio and brand. This acquisition combines Leukos' advanced technologies, including pulsed micro lasers,...

    01-08
    Übersetzung anzeigen
  • Innovative nanoparticle analysis: achieving breakthrough 3D imaging using X-ray lasers

    The latest progress in X-ray laser technology has opened up a new era of nanoscale exploration, bringing unprecedented opportunities for materials science and nanotechnology. Researchers have developed a novel imaging technique that can directly visualize separated nanosamples in free flight, capturing their complex structures with stunning details. This breakthrough method relies on single cohere...

    2024-03-05
    Übersetzung anzeigen
  • TRUMPF utilizes a laser driven X-ray source to improve electric vehicle batteries

    In the future, electric vehicle battery manufacturers can further improve the durability and performance of electric vehicle batteries through compact X-ray sources. The XProLas development partnership has now begun to develop these laser driven X-ray sources under the leadership of TRUMPF. The first batch of demonstration systems will be completed in 2026. In the future, manufacturers will be abl...

    2024-03-01
    Übersetzung anzeigen
  • NLIGHT releases new fiber laser products

    Recently, nLIGHT launched a new series of ProcessGUARD fiber lasers, which innovatively integrates process monitoring systems with fiber lasers and is committed to providing quality "protection" for applications such as cutting, welding, and additive manufacturing.New ConceptThe nLIGHT ProcessGUARD series fiber laser integrates a photodiode based plasma process monitoring system into the nLIGHT Co...

    2024-11-07
    Übersetzung anzeigen