Deutsch

Comparison of Blue and Infrared Wavelength in Pure Nickel Laser Deep Fusion Welding Process

198
2024-08-13 14:40:01
Übersetzung anzeigen

It is reported that researchers from BIAS Bremer Institution f ü r angewandte Strahltechnik GmbH in Germany have reported a comparative study of laser deep penetration welding processes for pure nickel using blue and infrared light wavelengths. The related research was published in Welding in the World under the title "Process comparison of laser deep penetration welding in pure nickel using blue and infrared wavelengths".

Compared with infrared laser radiation, the Fresnel absorption rate in the visible blue spectral range is significantly increased, making it suitable for thermal conduction mode welding of materials such as copper and nickel. Recently, a blue laser source with a wavelength of 445 nm has emerged, whose power and beam parameters are sufficient to exceed the intensity threshold of laser deep penetration welding. Compared with heat conduction mode welding, in laser beam deep penetration welding, the total absorption is significantly increased due to multiple reflections inside the lock hole. However, since the absorbed energy per reflection inside the lock hole is wavelength dependent, it can be assumed that the selection of laser wavelength will cause changes in the local energy distribution inside the lock hole, thereby altering its dynamics. To investigate this issue, researchers conducted laser beam deep penetration welding experiments on 2.4068 pure nickel using infrared laser sources and blue laser sources with comparable beam characteristics. The experiment was monitored and compared through multi-sensor devices and metallographic analysis. The use of a blue laser beam can reduce sputtering volume, increase porosity, and significantly alter acoustic emission, thus proving the hypothesis for pure nickel.

Figure 1: The measured caustics and one-dimensional and two-dimensional intensity curves on the focal plane of the laser beam used.


Figure 2: Sample size and design (the sample needs to be replaced after each welding to allow the sample temperature to drop to room temperature before the next welding)


Figure 3: Left: Experimental schematic diagram; Right: Image of experimental setup


Figure 4: Left: High speed video raw frames used for splash detection; Center: identified areas of interest; Right: Detected splashes


Figure 5: Left: High speed video raw frame used for measuring lock hole area; Left second: Detected lock hole area; Right two: measured lock hole area; Right: Definition of Lock Hole Area Radius Deviation

Research has shown that the comparison of carbon dioxide laser sources and solid-state laser sources with different wavelengths has a significant impact on keyhole dynamics, but this cannot be entirely attributed to changes in the Fresnel absorption coefficient caused by plasma absorption. In order to further clarify the relevant effects, this study aims to separate the effects of plasma absorption and Fresnel absorption coefficient changes on keyhole dynamics by using lasers of different wavelengths. The hypothesis studied by researchers is that in nickel laser beam deep penetration welding, the laser wavelength changes from 1030 nm to 445 nm, and the Fresnel absorption coefficient increases accordingly. This will cause changes in the local energy distribution inside the lock hole, thereby altering the dynamics of the lock hole, including the wave motion of the lock hole opening, the formation of splashes, acoustic emission, and the resulting porosity. To verify this hypothesis, experimental monitoring and comparison were conducted on nickel plates using lasers of the two wavelengths mentioned above. In this study, nickel was found to be more suitable than copper because the Fresnel absorption coefficient significantly increased from infrared to blue wavelengths. However, compared to copper laser beam welding, which can only observe unstable processes, researchers have developed a constant deep penetration welding process. This makes the welding process more comparable.

Figure 6: Average weld depth (upper figure) and average weld width (middle figure) as a function of laser power and wavelength; Characteristic metallographic cross-section (as shown in the figure below)


Figure 7: Etching the longitudinal section of the gold phase, with a significant increase in welding depth


Figure 8: Spectral Reference

This study conducted laser beam deep penetration welding experiments on 2.4068 pure nickel using an infrared laser beam source with a wavelength of 1030nm and a blue laser beam source with a wavelength of 445nm. The beam characteristics of these two laser beams were comparable. In each case, two different laser powers were used, with the same welding depth compared to samples welded using their respective other wavelengths, to investigate the hypothesis that changing the laser wavelength would alter the local energy distribution and dynamics inside the lock hole, including fluctuations in the lock hole opening, formation of splashes, acoustic emission, and resulting porosity. The experiment was monitored and compared through metallographic analysis and multi-sensor setup (including splash tracking, lock hole area tracking, and airborne acoustic emission measurement), and the results confirmed this hypothesis.

1. Changing the laser wavelength from 1030 nm to 445 nm will alter the dynamic of the laser beam deep penetration welding lock hole for pure nickel.

2. When welding pure nickel, the effect of Fresnel absorption coefficient on welding penetration decreases with the increase of aspect ratio when the laser beam wavelength changes from infrared wavelength to blue wavelength.

3. Compared with the wavelength of the blue laser beam, using an infrared laser beam with a lower Fresnel absorption coefficient can reduce the porosity of nickel welds.

4. For laser beam deep penetration welding of nickel, compared with welding processes using infrared laser beam wavelengths, using blue wavelengths with higher Fresnel absorption coefficients can reduce spatter and improve process stability.

5. Through airborne acoustic analysis, significant differences can be detected when welding nickel using blue wavelength and infrared wavelength.

Source: Yangtze River Delta Laser Alliance

Ähnliche Empfehlungen
  • Emerson launches a new type of laser welding machine that can efficiently and flexibly process medical precision components

    Recently, Emerson, the global leader in industrial automation, launched the all-new Branson ™ The GLX-1 laser welding machine, with its outstanding flexibility and innovative technology, accurately meets the urgent market demand for connecting small, complex or delicate plastic components. Its compact volume and modular design make it easy to integrate into the ISO-8 cleanroom environment, while t...

    2024-06-04
    Übersetzung anzeigen
  • Zygo showcases 3D optical metrology instruments on Space Comm

    Zygo Corporation, a business unit of AMETEK, announced that it will be showcased at the D28 booth of the Space Comm Expo held in Farnborough, UK from March 6th to 7th this year.Space Comm showcases the end-to-end supply chain of products, services, and applications that provide information and technological development for commercial aerospace enterprises, governments, and defense organizations, p...

    2024-03-01
    Übersetzung anzeigen
  • Dazu Photonics launched the third generation of high power fiber laser successfully increased the product power to 50kW

    In recent years, with the vigorous development of new energy and other industries, the improvement of environmental awareness and the increasing demand for new applications, the demand for fiber lasers in intelligent manufacturing is increasing, and the demand for power is also increasing, and high-power fiber lasers can significantly improve production efficiency and are widely sought after by th...

    2023-09-02
    Übersetzung anzeigen
  • Continuation of the Term of President and CEO of Jena Germany

    Recently, the supervisory board of Jenoptik, a leading German laser technology company, announced an important decision: to extend and confirm the term of Dr. Stefan Traeger as Chairman of the Executive Board, with a new term of three years starting from July 1, 2025, and the contract validity period correspondingly extended to June 30, 2028. Dr. Stefan Traeger has been serving as the President ...

    2024-09-06
    Übersetzung anzeigen
  • This laser cleaning "dark horse" announces annual performance and shareholder information

    On April 15th local time, Laser Photonics, a developer of laser cleaning equipment and solutions, announced its financial results for the fourth quarter and the year ended December 31, 2023. The financial report shows that in the fourth quarter of 2023, its revenue was $800000, with reduced operating and net losses. Here are the specific data:In addition to the financial report, the company's CEO ...

    2024-04-16
    Übersetzung anzeigen