Deutsch

Progress has been made in the research of phase modulation of terahertz programmable metasurfaces based on free carrier plasmonic dispersion effect

682
2024-07-26 14:33:32
Übersetzung anzeigen

Recently, the team of Situ Guohai and Guo Jinying from the Aerospace Laser Technology and Systems Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, and the School of Microelectronics at Shanghai University collaborated to propose a terahertz phase controlled programmable metasurface design scheme based on free carrier plasma dispersion effect. The related research results were published in Applied Physics Letters under the title "Terahertz programmable metasurface for phase modulation based on free carrier plasma dispersion effect".

Terahertz modulators have broad application prospects in fields such as terahertz intelligent communication and computational imaging. However, existing terahertz phase modulators are not satisfactory in terms of speed, efficiency, and flux. Therefore, there is an urgent need to develop high-speed, efficient, and high-throughput terahertz spatial light modulators.

The research team proposed a terahertz programmable metasurface design scheme based on the free carrier plasmonic dispersion effect. By integrating the pn junction into the "H" - shaped metal metasurface unit structure and utilizing the change in external voltage to alter the carrier concentration distribution of the pn junction, continuous phase control at a frequency of 0.4 THz and 270 ° with an average efficiency of 30% were achieved in simulation. The metasurface unit adopts a "MIM" structure, and each unit is independently adjustable, while utilizing the high-speed switching characteristics of the pn junction, which is expected to achieve GHz level control speed. The team also demonstrated the far-field radiation results of the metasurface unit array, with a peak sidelobe ratio of 13dB, demonstrating excellent beam steering performance. The high-speed, efficient, and high-throughput advantages demonstrated by this design scheme in terahertz phase modulation are expected to play an important role in terahertz communication and imaging fields.

Figure 1. Schematic diagram of programmable metasurface unit structure and beam steering function

Figure 2. Continuous phase modulation of metasurface units under voltage

This research achievement has received support from the National Natural Science Foundation of China, the Shanghai Academic Research Leader Project, and the Shanghai Municipal Science and Technology Major Project.

Source: Shanghai Institute of Optics and Fine Mechanics

Ähnliche Empfehlungen
  • Research progress on machine learning for defect detection and prediction in laser cladding process

    It is reported that researchers from Foshan University, the Institute of Chemical Defense of the Academy of Military Sciences, the National Defense Technology Key Laboratory of Equipment Remanufacturing Technology of the Armored Forces Academy, and Chengdu State owned Jinjiang Machinery Factory have summarized and reported the latest progress of machine learning in defect detection and prediction ...

    01-17
    Übersetzung anzeigen
  • The emergence of laser engraving glass technology injects exquisite and vivid artistic quality into glass works

    The emergence of laser inner glass carving technology has brought new forms and possibilities of artistic expression to glass art. It not only showcases advanced technology and innovative craftsmanship, but also endows glass works with unique artistry.Firstly, laser engraved glass can achieve very fine and complex carving effects. By penetrating the interior of glass with a laser beam for carving,...

    2023-09-15
    Übersetzung anzeigen
  • DustPhotonic is the first to develop an 800G silicon photonic chip

    Recently, DustPhotonics released a single chip 800G-DR8 silicon photonic chip for data center applications, which is an important milestone in practical photonics in data centers. The company claims that its single-chip solution provides high-performance and easy to implement solutions for system architects.DustPhotonics' 800G-DR8 photonic integrated circuit provides a single chip solution for fib...

    2023-10-13
    Übersetzung anzeigen
  • Scientists have developed the most powerful ultraviolet laser using LBO crystals

    It is reported that recently researchers from the Chinese Academy of Sciences have achieved the highest power output of 193 nm and 221 nm lasers using lithium borate (LBO) crystals. This achievement lays the foundation for the further application of the laser in deep ultraviolet (DUV) spectroscopy.The laser in DUV spectroscopy has many applications in science and technology, such as defect detecti...

    2024-04-07
    Übersetzung anzeigen
  • Free space nanoprinting beyond optical limitations can create 4D functional structures

    Two photon polymerization is a potential method for nanofabrication of integrated nanomaterials based on femtosecond laser technology. The challenges faced in the field of 3D nanoprinting include slow layer by layer printing speed and limited material selection due to laser material interactions.In a new report in Progress in Science, Chenqi Yi and a team of scientists in the fields of technical s...

    2023-10-09
    Übersetzung anzeigen