Deutsch

Shanghai Institute of Optics and Fine Mechanics has made progress in the research of interferometer wavefront calibration methods

871
2024-07-23 11:31:18
Übersetzung anzeigen

Recently, the research team of the High end Optoelectronic Equipment Department at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the study of wavefront calibration methods for interferometer testing. The relevant research results were published in Optics Express under the title of "High precision wavefront correction method ininterometer testing".

High precision optical components have been fully applied in fields such as laser technology, optical communication, medical imaging, astronomy and space exploration, semiconductor manufacturing, and scientific research. The use of interferometers is currently the main method for high-precision optical detection. In order to obtain the true surface shape error of the test component, the wavefront calibration method must be used to calibrate the wavefront error of the interferometer test. However, there is currently no complete method for wavefront calibration in optical processing.

Figure 1. Ring error generation

 


Figure 2. Results of Ring Error Repair

In this work, the research team proposed a new high-precision optical surface wavefront correction method to address the difference between wavefront error in Fizeau interferometer testing and actual surface error. The main content includes fitting optical surface function parameters, correcting lateral distortion, eliminating misalignment errors, and calculating concave surface errors. And the error of this method was analyzed in depth from the aspects of function parameter fitting, ray tracing, interpolation, etc. The wavefront calibration of the off-axis parabolic mirror in the zero position test configuration proves the effectiveness of this method. The results showed that the circular error generated by the experiment was significantly reduced, and the off-axis error increased from 0.23 λ to 0.05 λ (λ=632.8nm). The PV deviation from the non spherical surface exceeded 8.5mm. This study is of great significance in the high-precision optical component detection process.

Source: Shanghai Institute of Optics and Fine Mechanics

Ähnliche Empfehlungen
  • The world's most powerful laser attempts to unravel the secrets of the universe

    They are the strongest lasers in history, and their beams are helping scientists explore the structure of the universe.In a research laboratory at the University of Michigan, bright green light fills the vacuum chamber of a technology giant. It is the size of two tennis courts. The walls are shielded with 60 centimeters of concrete to prevent radiation leakage, and workers wear masks and hairnets ...

    2023-11-28
    Übersetzung anzeigen
  • BenQ Launches V5000i 4K RGB Laser TV Projector

    Display solution brand BenQ recently launched the 4K RGB laser TV projector V5000i.The V5000i focuses on providing the pinnacle of innovation, unparalleled color accuracy, and excellent audio quality, elevating the home theater world to unprecedented heights. It is the perfect replacement for large screen televisions, particularly suitable for well lit spaces such as spacious living areas, "the co...

    2023-10-10
    Übersetzung anzeigen
  • Swiitol Launches E24 Pro: A Breakthrough in Laser Engraving Technology

    In order to completely change the world of laser engraving, Swiitol has launched the E24 Pro, a 24W integrated laser engraving machine with cutting-edge features and functions. The Swiitol E24 Pro showcases an innovative integrated structure laser engraving machine made of durable aluminum alloy. It is worth noting that the device can be used out of the box without installation, providing users wi...

    2023-11-23
    Übersetzung anzeigen
  • The physicist who built the ultrafast "attosecond" laser won the Nobel Prize

    Pierre Agostini, Ferenc Krausz, and Anne L'Huillier won the award for their ultra short optical pulses, which made close research on electrons possible.Ferenc Klaus, Anne Lullier, and Pierre Agostini (from left to right)Image sources: BBVA Foundation, Kenneth Ruona/Lund University, Ohio State UniversityThis year's Nobel Prize in Physics was awarded to three physicists - Pierre Agostini of Ohio St...

    2023-10-09
    Übersetzung anzeigen
  • Holographic Laser Processing: Rapid Manufacturing and Image Reconstruction of Artificial Biomimetic Compound Eyes

    IntroductionIn recent years, inspired by insect compound eyes, artificial biomimetic compound eyes have shown great advantages in overcoming the limitations of existing imaging devices such as large, bulky, and heavy, and improving the performance of medical endoscopy, panoramic imaging, micro navigation, and robot vision due to their unique optical imaging solutions such as small size, distortion...

    2023-10-25
    Übersetzung anzeigen