Deutsch

A new type of all-optical intelligent spectrometer

861
2024-07-22 11:54:26
Übersetzung anzeigen

Recently, Professor Xu Tingfa's research team from the School of Optoelectronics at Beijing Institute of Technology and Assistant Professor Lin Xing's team from Tsinghua University jointly developed a new type of Opto Intelligence Spectrometer (OIS). The device is based on diffractive neural network technology and achieves precise spectral reconstruction under spatially coherent or spatially incoherent light sources, with significant advantages of low energy consumption and light speed processing. The relevant achievements have been published under the title "Opto intelligence Spectrometer Using Diffractive Neural Networks" in the top international optical journal "Nanophotonics" (China University of Science and Technology, Class 1, Top Journal).

Nanophotonics, published by Walter de Gruyter in Germany, focuses on exploring cutting-edge advances in the interaction between light and matter, as well as their fundamental principles and applications. The first authors of this paper are Wang Ze, a master's student at Beijing Institute of Technology, and Chen Hang, a postdoctoral fellow at Tsinghua University. The corresponding authors are Associate Researcher Li Jianan, Professor Xu Tingfa, and Assistant Professor Lin Xing.

The newly developed all optical intelligent spectrometer (OIS) converts the spectral amplitude of the input light source into the detection intensity on the output plane, and uses multiple detectors to accurately perceive the intensity of different spectral bands. By establishing a mapping relationship between input and output and optimizing the phase distribution of the modulation layer using two mean square error (MSE) loss functions, high contrast output intensity distribution and accurate reconstruction of the input light source spectrum were achieved. The principle is shown in Figure 1.

Figure 1. Architecture of all-optical intelligent spectrometer based on diffractive neural network.

The experimental results show that OIS exhibits excellent spectral reconstruction capability under both spatially coherent and spatially incoherent light sources (see Figure 2). In addition, the application testing of the device on the real-world dataset CAVE shows that it has good generalization ability and practical application potential (see Figure 3).

Figure 2. OIS spectral reconstruction results with a spectral resolution of 10nm. Left image: Randomly generated spectral amplitude distribution and spectral reconstruction results. Right figure: Intensity distribution of the output plane.

Figure 3. Spectral reconstruction results of OIS on the real-world dataset CAVE, with a spectral resolution of 10nm.
This study has overcome the long-standing challenges of traditional spectral reconstruction architectures, such as bulky optical components, complex electronic reconstruction algorithms, and limited flexibility. It can serve as a basic unit for array layout, laying the foundation for full light speed and high-quality spectral imaging.

Source: Beijing Institute of Technology

Ähnliche Empfehlungen
  • Important Discovery in Aluminum Alloy Laser Coaxial Fusion Additive Manufacturing

    Aluminum alloy has unique advantages such as lightweight, high strength, and excellent corrosion resistance, and is highly favored in the aerospace manufacturing field. Laser Coaxial Fusion Additive Manufacturing (LCWAM) adopts beam shaping technology, which uses wire as the deposition material to melt and stack layer by layer. Compared to traditional side axis wire feeding technology, laser coaxi...

    2024-04-29
    Übersetzung anzeigen
  • Southeast University makes new progress in quantum efficiency research of van der Waals light-emitting diodes

    Recently, Professor Ni Zhenhua from the School of Electronic Science and Engineering at Southeast University, Professor Lv Junpeng from the School of Physics, Professor Liu Hongwei from the School of Physical Science and Technology at Nanjing Normal University, and Professor Zhou Peng from the School of Microelectronics at Fudan University collaborated to propose a van der Waals light-emitting dio...

    2024-10-28
    Übersetzung anzeigen
  • French silicon optical company Scintil realizes the integration of III-VI DFB lasers and amplifiers with standard silicon optical technology

    Recently, French silicon photonics company Scintil Photonics announced an exciting collaboration, successfully integrating III-V-DFB lasers and amplifiers with standard silicon photonics technology in the production of Israeli semiconductor company Tower Semiconductor. This milestone collaboration marks a crucial step for Scintil in strengthening its supply chain, bringing new possibilities to com...

    2024-03-05
    Übersetzung anzeigen
  • Leica Measurement System Development First Person Laser Scanner

    Leica Geosystems, a subsidiary of Hexagon, has developed Leica BLK2GO PULSE, its first person laser scanner, which combines LiDAR sensor technology with the original Leica BLK2GO shape. The technology will be released in early 2024.The scanner provides users with a fast, simple, and intuitive first person scanning method that can be controlled through a smartphone and provides real-time full color...

    2023-10-19
    Übersetzung anzeigen
  • Photon chips help drones fly unobstructed in weak signal areas

    With funding from the National Science Foundation of the United States, researchers at the University of Rochester are developing photonic chips that use quantum technology called "weak value amplification" to replace mechanical gyroscopes used in drones, enabling them to fly in areas where GPS signals are obstructed or unavailable.Using this quantum technology, scientists aim to provide the same ...

    2023-10-28
    Übersetzung anzeigen