Deutsch

Samsung and SK Hynix Explore Laser Debonding Technology

483
2024-07-16 14:45:46
Übersetzung anzeigen

According to South Korean media etnews, Samsung Electronics and SK Hynix have started the process technology conversion of high bandwidth memory (HBM) wafers, with the introduction of new technologies to prevent wafer warping as the core, which is considered to be aimed at the next generation HBM. It is expected that with the process transformation, the material and equipment supply chain will also undergo changes.

It is reported that Samsung Electronics and SK Hynix are currently working with partners to develop a laser method to replace HBM with wafer exfoliation (debonding) technology.

Wafer debonding is the process of separating a thinned wafer from a temporary carrier during the manufacturing process. In the semiconductor manufacturing process, the main wafer and the carrier wafer are bonded together with adhesive and then peeled off with a blade, hence it is called mechanical debonding.

As the number of layers in HBM increases, such as 12 or 16 layers, the wafer becomes thinner, and the use of blade separation methods faces limits. When the wafer thickness is less than 30 microns, there is a concern about damaging the wafer, so the process steps of etching, polishing, wiring, etc. are increased. At the same time, new adhesives that are suitable for ultra-high temperature environments need to be used. This is also the reason why the two companies chose to use lasers instead of traditional mechanical methods.

Industry insiders familiar with the issue explained that "in order to cope with extreme process environments, stronger adhesives are needed, which cannot be separated by mechanical means. Therefore, the new technology of laser has been introduced," and stated that "this is an attempt to stably separate the main wafer and the carrier wafer.

Samsung Electronics and SK Hynix are considering using various methods such as extreme ultraviolet (EUV) laser and ultraviolet (UV) laser.
Laser debonding is believed to be introduced first into the 16 layer HBM4. HBM4 uses a system semiconductor based "base chip" at the bottom of stacked DRAM memory, requiring finer processes and thinner wafers, so laser technology is considered appropriate.

When using lasers, changes in the supply chain of related materials and equipment are inevitable. The existing mechanical methods are dominated by Tokyo Electric of Japan and S Ü SS MicroTec of Germany, which occupy the top two positions in the market. Laser technology may attract more equipment companies and is expected to engage in fierce competition.

The wafer debonding adhesive is mainly supplied by 3M in the United States, Shin Etsu Chemical in Japan, Nissan Chemical, TOK, and others. It is reported that these companies are also developing new adhesive materials that can be used for laser methods instead of existing mechanical methods.

Source: Yangtze River Delta Laser Alliance

Ähnliche Empfehlungen
  • The researchers expect the EUV lithography market to grow from $9.4 billion in 2023 to $25.3 billion in 2028

    The researchers estimate the period from 2023 to 2028. EUV lithography will address the limitations of traditional optical lithography, which has reached its physical limits in terms of resolution. The shorter wavelength of EUV light allows for the creation of smaller features and tighter patterns on silicon wafers, enabling the manufacture of advanced microchips with greater transistor densities....

    2023-08-04
    Übersetzung anzeigen
  • This laser cleaning "dark horse" announces annual performance and shareholder information

    On April 15th local time, Laser Photonics, a developer of laser cleaning equipment and solutions, announced its financial results for the fourth quarter and the year ended December 31, 2023. The financial report shows that in the fourth quarter of 2023, its revenue was $800000, with reduced operating and net losses. Here are the specific data:In addition to the financial report, the company's CEO ...

    2024-04-16
    Übersetzung anzeigen
  • New two-photon aggregation technology significantly reduces the cost of femtosecond laser 3D printing

    Scientists at Purdue University in the United States have developed a new type of two-photon polymerization technology. This technology cleverly combines two lasers and utilizes 3D printing technology to print complex high-resolution 3D structures while reducing femtosecond laser power by 50%. It helps to reduce the cost of high-resolution 3D printing technology, thereby further expanding its appl...

    2024-07-05
    Übersetzung anzeigen
  • Atomstack Maker A5 V2: A laser engraving machine suitable for beginners

    In the recent DIY field, innovative and increasingly affordable laser engraving machines have emerged, mainly designed for first-time users in this field. A particularly noteworthy example in this regard is the Atomstack Maker A5 V2 model. This device is known for its versatility and ease of use, making it an ideal choice for beginners in the world of laser engraving.The Atomstack Maker A5 V2 is a...

    2024-01-03
    Übersetzung anzeigen
  • A New RIEGL Laser Scanning Solution for Drone Data Acquisition

    With its latest developments, RIEGL once again emphasizes its pioneering role as a supplier of high-performance LiDAR sensors and integrated systems with UAS. The continuous trend in the drone system industry requires measurement level laser scanners that match the integrated performance of compact multi rotor and high-speed vertical takeoff and landing or fixed wing drone platforms.RIEGL has reco...

    2023-12-01
    Übersetzung anzeigen