Deutsch

Shanghai Microsystems Institute has developed a high-speed photon detector with distinguishable photon numbers

445
2024-07-12 11:14:40
Übersetzung anzeigen

Recently, Li Hao and You Lixing's team from the Chinese Academy of Sciences Shanghai Institute of Microsystems and Information Technology developed an ultrahigh speed, photon number resolvable optical quantum detector with a maximum count rate of 5GHz and a photon number resolution of 61 by using the sandwich structure superconducting nanowires and multi wires working in parallel. The related research results, titled "Superconducting single photon detector with speed of 5 GHz and photon number resolution of 61", were published online in Photonics Research and were selected for editorial recommendation.

In recent years, superconducting nanowire single photon detectors have been widely used in quantum communication, optical quantum computing, and quantum mechanics principle verification due to their high efficiency, low dark count rate, and excellent time resolution.

The team has developed a highly efficient, ultra high speed, and high photon resolution superconducting detector integrated system. To ensure the portability and reliability of the detection system, the project has built a cooling integrated system based on a GM small refrigeration mechanism. The system supports 64 electrical channels and has a minimum operating temperature of 2.3 K. The detector chip integrates 64 superconducting nanowires on a distributed Bragg reflector, achieving both improved photon absorption and detection speed. After characterization, the yield of nanowire preparation was 61/64, and the system detection efficiency reached 90% at a wavelength of 1550 nm. The maximum counting rate was 5.2 GHz, and the counting rate was 1.7 GHz when the detection efficiency decreased by 3dB. The photon number resolution was 61. The performance indicators of this detection system are expected to support applications such as deep space laser communication, high-speed quantum communication, and basic quantum optical experiments.

The research work was supported by the Science and Technology Innovation 2030 Major Project, the National Natural Science Foundation of China, the Youth Innovation Promotion Association of the Chinese Academy of Sciences, and the "Sailing Plan" of Shanghai.


Device structure (a), superconducting nanowires (b), device packaging (c), and refrigeration system (d)

Source: Shanghai Institute of Microsystems and Information Technology, Chinese Academy of Sciences

Ähnliche Empfehlungen
  • The INRS camera captures transient events and is suitable for various scenarios such as high-speed LiDAR systems for autonomous driving

    It is reported that the National Institutes of Sciences (INRS) of Canada has developed a camera platform that can achieve cheaper ultra fast imaging through the use of ready-made components, which can be used in various applications.This new device aims to address some of the limitations of current high-speed imaging, including parallax errors and potential damage from pulse illumination. Th...

    2023-10-07
    Übersetzung anzeigen
  • Invest 13 million euros! Tongkuai opens its Southeast European headquarters in Hungary

    Recently, German company Tongkuai invested 13 million euros to open its headquarters in Southeast Europe in Hungary and jointly established a digital network demonstration factory in the Gothler Business Park. Its business focuses on machine tools for digital manufacturing and laser sales for batteries and other automotive components.Nicola Leibinger Kamm ü ller, CEO of Tongkuai, said, "It is...

    2023-09-16
    Übersetzung anzeigen
  • LightSolver announces the launch of the LPU100 laser computing system

    LightSolver, a laser based computing company, announced that it is a breakthrough in quantum inspired high-performance computing.Its LPU100 system utilizes the power of 100 lasers to solve optimization problems, challenging the processing time of quantum and supercomputers. The laser array of LPU100 represents 100 continuous variables and can solve up to 120100 combinations of problems, enabling ...

    2024-03-22
    Übersetzung anzeigen
  • Laser based deformation may lead to self optimized aircraft wings

    Due to advances in materials science by Stockholm researchers, changing the shape during flight to better handle airflow passing through its aircraft wings may be imminent. The trick involves the melting and drilling capabilities of lasers.Researchers from KTH Royal Institute of Technology in Stockholm, Sweden conducted experiments on paraffin. Using the 2D version of the material, they were able ...

    2024-01-18
    Übersetzung anzeigen
  • Xi'an Institute of Optics and Fine Mechanics has made significant progress in the field of metasurface nonlinear photonics

    Recently, the Research Group of Nonlinear Photonics Technology and Application in the Transient Optics Research Room of Xi'an Institute of Optics and Mechanics, Chinese Academy of Sciences has made important progress in the field of super surface nonlinear photonics. Relevant research results were published in Laser&Photonics Reviews (IF=9.8), the top journal of the first district of the Chine...

    04-30
    Übersetzung anzeigen