Deutsch

Meltio launches a new blue laser 3D printer M600

863
2024-07-06 10:25:58
Übersetzung anzeigen

Recently, metal 3D printing manufacturer Meltio launched its latest metal 3D printer - M600. This M600 has shown significant progress in integrating into industrial manufacturing processes, no longer limited to niche applications.

 



Like most of Meltio's product lines, the design of M600 was originally intended to address common manufacturing issues such as long delivery times, high inventory costs, and fragile supply chains. For this purpose, the Meltio M600 aims to improve productivity, reduce costs, and achieve internal component production, thereby making the manufacturing process more robust.

Lukas Hoppe, the R&D director of Meltio, stated at a press conference that the design task of the new Meltio M600 is to envision a perfect 3D printer suitable for machining workshops.

3D printing has enormous potential to reduce delivery time and manufacturing dependence through internal printing of parts, reduce warehouse inventory, as raw materials can be converted into final parts on demand, and reduce costs by only using materials where needed

Blue light environmental protection new trend, more cost-effective
Unlike traditional 3D printing technology, Meltio's M600 uses wire laser metal deposition. This process is similar to laser welding, allowing machines to easily print simple or complex metal structures.

Hope pointed out, "Our goal is to strike a balance between machine size, cost, and productivity for the Meltio M600, while not compromising quality, reliability, and ease of use."

The M600 uses wire as the material, which is safer, more cost-effective, and reduces the risk of pollution. The wire is bombarded by high-power laser in the print head, achieving precise and controllable metal deposition.

However, the difference between M600 and Meltio's other metal 3D printers is that it uses cutting-edge blue light laser technology. This innovation not only improves printing speed but also reduces required energy, making it particularly suitable for materials that challenge infrared lasers, such as copper and aluminum alloys.

The use of blue light laser technology and wire not only improves operational efficiency, but also reduces the carbon footprint of the production process, meeting the growing demand for sustainable manufacturing.

Leading the Revolution of Metal 3D Printing
The design features of M600 include a spacious (300x400x600mm) fully inert workspace that can handle various materials such as titanium, copper, aluminum alloys, stainless steel, tool steel, nickel, invar alloys, and Inconel.

This 3D printer also features a built-in workpiece fixing solution and a three-axis touch probe, adding versatility.

The design of M600 prioritizes autonomous operation, reducing operator intervention and meeting the demand for reliable and continuous production in industrial manufacturing.

Meltio's M600 is an important step in making metal additive manufacturing a viable and competitive option for various industrial applications.
It improves material processing, production efficiency, and operational integration, opening up opportunities for the wider adoption of 3D printing technology in industries such as automotive, aerospace, oil and gas, mining, and defense.

Source: OFweek

Ähnliche Empfehlungen
  • Laser induced magnetic generation of non-magnetic materials at room temperature helps to develop faster and more energy-efficient information transmission and storage technologies

    Researchers from the University of Stockholm in Sweden, the Nordic Institute for Theoretical Physics, and the University of Cafoscari in Venice, Italy have successfully demonstrated for the first time how lasers induce quantum behavior at room temperature and make non-magnetic materials magnetic. This breakthrough is expected to pave the way for faster and more energy-efficient computers, informat...

    2024-06-03
    Übersetzung anzeigen
  • Micro optical technology based on metasurfaces has become a hot topic

    Introduction and application of a micro optical platform using metasurfacesMetasurfaces are artificial materials that excel in manipulating perception. Due to the fact that metasurfaces can reduce the size of lenses to one thousandth of traditional lenses, they have attracted great attention as optical components for miniaturization of next-generation virtual reality, augmented reality, and LiDAR ...

    2024-02-02
    Übersetzung anzeigen
  • New technology can efficiently heal cracks in nickel based high-temperature alloys manufactured by laser additive manufacturing

    Recently, Professor Zhu Qiang's team from the Department of Mechanical and Energy Engineering at Southern University of Science and Technology published their latest research findings in the Journal of Materials Science. The research team has proposed a new process for liquid induced healing (LIH) laser additive manufacturing of cracks. By controlling micro remelting at grain boundaries to introdu...

    2024-03-15
    Übersetzung anzeigen
  • Zeiss Medical Technology nominated for the 2025 German Future Award

    Germany’s Office of the Federal President has announced the nominations for the German Future Prize 2025 (“Deutscher Zukunftspreis”). This year’s nominees include Dr. Mark Bischoff, Dr. Gregor Stobrawa and Dirk Mühlhoff from Zeiss Medical Technology (ZMT), for their project for minimally-invasive lenticule extraction to correct refractive errors. Nominated: Dirk Mühlhoff, Mark Bischoff, and Gr...

    09-22
    Übersetzung anzeigen
  • Cambridge University researchers use lasers to "heat and strike" 3D printed steel

    According to the University of Cambridge, researchers have developed a new method for 3D printing metal, which can help reduce costs and more effectively utilize resources. This method, developed by a research team led by the University of Cambridge, allows structural modifications to be "programmed" into metal alloys during 3D printing - fine-tuning their performance without the need for thousand...

    2023-11-03
    Übersetzung anzeigen