Deutsch

Shanghai Optics and Machinery Institute has made progress in the development of picosecond reflectors based on composite materials

842
2024-06-12 14:55:22
Übersetzung anzeigen

Recently, the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, has made progress in the research of picosecond reflectors based on composite materials. The relevant research results are titled "Hybrid material based mirror coatings for picosecond laser applications" and published in Optics and Laser Technology.

Picosecond pulse lasers are often used in high-energy density physics basic research. As a key component of picosecond laser systems, the laser damage threshold of the reflector directly affects the output energy of the picosecond laser system. Traditional picosecond laser reflectors use hafnium oxide and silicon oxide as high and low refractive index materials, respectively. In recent years, composite materials, including nano layers and mixtures, have received widespread attention in improving the laser damage threshold of thin film components. Studying the picosecond reflectors of composite materials and their laser damage characteristics under different pulse widths of laser irradiation has certain practical application value.

Figure 1. (a) AFM microscopy images and RMS roughness of different mirrors (b) probability distribution of laser induced damage (8ps, 1053 nm)

Figure 2. Probability distribution of laser induced damage with different pulse widths (a) 0.5 ps (b) 1 ps and (c) 3 ps (d) Changes in laser damage threshold with laser pulse width

Researchers used electron beam evaporation technology to prepare four types of composite materials, including hafnium oxide/alumina nano layers, hafnium oxide/silicon oxide nano layers, hafnium oxide alumina mixtures, and hafnium oxide silicon oxide mixtures. Compared with single hafnium oxide materials, composite materials can inhibit crystallization and reduce surface roughness. Four types of reflective mirrors with operating wavelengths at 1053 nm were prepared using the above-mentioned composite materials and silicon oxide materials as high and low refractive index materials. The damage test results of the mirror under laser irradiation with different pulse widths (0.5 ps, 1 ps, 3 ps, and 8 ps) show that compared with the picosecond mirror using hafnium oxide as a high refractive index material, the picosecond mirror using composite materials as a high refractive index material exhibits a higher excitation damage threshold. Within the laser pulse range studied in this article, the initial laser damage mechanism of the reflector begins to change around 3 ps. This achievement is of great significance for improving the performance of optical thin film components such as picosecond laser reflectors.

Source: Shanghai Institute of Optics and Mechanics

Ähnliche Empfehlungen
  • Real time measurement of femtosecond dynamics of relativistic intense laser driven ultra-hot electron beams

    In the interaction between ultra short and ultra strong lasers and matter, short pulse width and high energy electrons are generated, commonly referred to as "hot electrons". The generation and transport of hot electrons is one of the important fundamental issues in high-energy density physics of lasers. Superhot electrons can excite ultrafast electromagnetic radiation in a wide range of wavelengt...

    2024-06-21
    Übersetzung anzeigen
  • Scientists develop flat-topped laser beams to overcome Gaussian distribution limitations

    The beam emitted by almost all laser systems follows the Angle pattern of Gaussian distribution. The Gaussian irradiance distribution means that irradiance has a smooth peak at the center point and slowly declines toward the edge. In theory, the irradiance level of a Gaussian distribution can never reach zero, which means that the distribution can expand indefinitely. This phenomenon in the laser ...

    2023-08-04
    Übersetzung anzeigen
  • Xi'an Institute of Optics and Fine Mechanics: New progress in large field two-photon scattering microscopy imaging technology

    Adaptive optics is a technique that improves imaging quality by correcting wavefront distortion. Interference focus sensing (IFS), as a new method proposed in the field of adaptive optics in recent years, has been proven to have significant effects in correcting complex aberrations in deep tissue imaging. This technology is based on measuring a single location within the sample to determine the ca...

    04-15
    Übersetzung anzeigen
  • Afinum Management acquires significant stakes in two laser companies

    Recently, Afinum Management, a private equity firm based in Munich, Germany, has acquired a large stake in two laser companies, with the intention of opening up new laser markets by combining the strengths of three parties.According to media reports, the two companies are ARC Laser in Germany and GNS neo Laser in Israel, and Afinum has agreed with the founders of the two companies that the acquisi...

    2024-08-08
    Übersetzung anzeigen
  • Scientists from the SLAC National Accelerator Laboratory in the United States have launched the world's most powerful X-ray laser

    Scientists at the SLAC National Accelerator Laboratory have launched the world's most powerful X-ray laser, which will be used for in-depth atomic and molecular research.It is a significant upgrade to its predecessor, as its brightness has increased by 10000 times.The upgraded laser facility also uses superconducting accelerator components, allowing it to operate at low temperatures near absolute ...

    2023-11-17
    Übersetzung anzeigen