Deutsch

Shanghai Optics and Machinery Institute has made progress in the development of picosecond reflectors based on composite materials

521
2024-06-12 14:55:22
Übersetzung anzeigen

Recently, the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, has made progress in the research of picosecond reflectors based on composite materials. The relevant research results are titled "Hybrid material based mirror coatings for picosecond laser applications" and published in Optics and Laser Technology.

Picosecond pulse lasers are often used in high-energy density physics basic research. As a key component of picosecond laser systems, the laser damage threshold of the reflector directly affects the output energy of the picosecond laser system. Traditional picosecond laser reflectors use hafnium oxide and silicon oxide as high and low refractive index materials, respectively. In recent years, composite materials, including nano layers and mixtures, have received widespread attention in improving the laser damage threshold of thin film components. Studying the picosecond reflectors of composite materials and their laser damage characteristics under different pulse widths of laser irradiation has certain practical application value.

Figure 1. (a) AFM microscopy images and RMS roughness of different mirrors (b) probability distribution of laser induced damage (8ps, 1053 nm)

Figure 2. Probability distribution of laser induced damage with different pulse widths (a) 0.5 ps (b) 1 ps and (c) 3 ps (d) Changes in laser damage threshold with laser pulse width

Researchers used electron beam evaporation technology to prepare four types of composite materials, including hafnium oxide/alumina nano layers, hafnium oxide/silicon oxide nano layers, hafnium oxide alumina mixtures, and hafnium oxide silicon oxide mixtures. Compared with single hafnium oxide materials, composite materials can inhibit crystallization and reduce surface roughness. Four types of reflective mirrors with operating wavelengths at 1053 nm were prepared using the above-mentioned composite materials and silicon oxide materials as high and low refractive index materials. The damage test results of the mirror under laser irradiation with different pulse widths (0.5 ps, 1 ps, 3 ps, and 8 ps) show that compared with the picosecond mirror using hafnium oxide as a high refractive index material, the picosecond mirror using composite materials as a high refractive index material exhibits a higher excitation damage threshold. Within the laser pulse range studied in this article, the initial laser damage mechanism of the reflector begins to change around 3 ps. This achievement is of great significance for improving the performance of optical thin film components such as picosecond laser reflectors.

Source: Shanghai Institute of Optics and Mechanics

Ähnliche Empfehlungen
  • Tsinghua University develops efficient and stable perovskite quantum dot deep red light devices

    Semiconductor quantum dots have the advantages of high quantum yield, narrow emission spectrum, and compatibility with solution processes. They have shown broad application prospects and enormous economic value in the field of optoelectronic materials and devices, and related research has won the Nobel Prize in Chemistry in 2023.Compared with traditional II-VI and III-V quantum dots (such as CdSe,...

    03-18
    Übersetzung anzeigen
  • Jenoptik Jenoptik Group's new factory officially completed in Germany

    After two and a half years of construction, Jenoptik Jenoptik Group's new factory in Dresden, Germany has been officially completed, marking the company's largest single investment in recent times. Jenoptik stated that by expanding its production and research and development capabilities in micro optical devices, it will provide high-precision sensor production technology for high-performance chip...

    05-16
    Übersetzung anzeigen
  • The creator of a computer that uses lasers to perform complex tasks at the speed of light has announced a breakthrough in high-performance computing

    LightSolver's new LPU100 system is powered by 100 lasers and can solve the most challenging problems through up to 120100 combinations.This computer was created by Dr. Ruti Ben Shlomi, CEO of LightSolver and Dr. Chen Tradonsky, CTO, a physicist at the Rehowatt Weizmann Institute for Science.It is not suitable for household use because its high computing power exceeds individual needs, but it is su...

    2024-03-21
    Übersetzung anzeigen
  • Aerotech's next-generation laser processing technology for medical device manufacturing

    Recently, Aerotech Inc., a global leader in precision motion control and automation, launched the ultimate cylindrical laser machining motion platform LaserTurn160. LaserTurn160 is designed for unparalleled precision and efficiency, with a 40% increase in production capacity compared to similar systems, setting a new standard for medical device manufacturing. Extremely high efficiency, unparalle...

    02-08
    Übersetzung anzeigen
  • Japan's Murata Machinery Launches a Punch and 4kW Fiber Laser Integrated System

    Recently, Murata Machinery USA, a representative Japanese manufacturer of machinery and CNC machine tools, announced the launch of the latest cutting-edge punch and fiber laser integrated equipment - MF3048HL. This integrated machine combines the advantages of punch operation and laser cutting technology, eliminating the need for separate settings or material transfer between machines.Muratec's pu...

    2023-09-01
    Übersetzung anzeigen