Deutsch

Microscopic Marvel photon devices have the potential to completely change the way physics and lasers are processed

446
2024-06-04 15:20:04
Übersetzung anzeigen

Researchers at Rensselaer Institute of Technology have developed a device that operates at room temperature, which is the first topological quantum simulator to operate under strong light matter interaction mechanisms, making high-tech research easier in cutting-edge ways.

Researchers at Rensselaer Institute of Technology have developed a device no larger than human hair, which will enable physicists to explore the fundamental concepts of matter and light. This study, published in the journal Nature Nanotechnology, can also help researchers develop more efficient lasers that are being used in a range of fields such as medicine and manufacturing.

This device is composed of a specific material called photonic topological insulator, which can guide photons (wave shaped particles formed into light) to specially designed interfaces without dispersing them in the material.

Topological insulators can simulate the behavior of multiple photons in a coherent manner, enabling them to act as micro laboratories to study quantum phenomena at very small scales.

Professor RPI and senior author of Natural Nanotechnology, Wei Bao, pointed out that our photonic topological insulator is a significant breakthrough in the field of fundamental physics. Its unique design allows materials to operate at room temperature, which was previously a challenge due to expensive equipment.

Our progress in energy-saving lasers has led to a seven fold increase in energy demand for room temperature equipment, which is much higher than previously developed low-temperature equipment.
RPI scientists have designed a new mechanism that utilizes the same techniques as in semiconductor manufacturing, involving atomic and molecular layers to create appropriate structures.

Our progress in energy-saving lasers has led to a seven fold increase in energy demand for room temperature equipment, which is much higher than previously developed low-temperature equipment.

RPI scientists have designed a new mechanism that utilizes the same techniques as in semiconductor manufacturing, involving atomic and molecular layers to create appropriate structures.

The device was manufactured by researchers who grew ultra-thin plates of halide perovskite, a crystal containing cesium, lead, and chlorine, and produced a polymer on it. They sandwiched these crystal plates and polymers between thin sheets of different oxide materials to create an object approximately 2 microns thick and 100 microns wide, which is roughly the same length and width as ordinary human hair.

When researchers applied lasers to devices, they observed a triangular pattern that lit up at the interface designed in the material. This mode is caused by the topology characteristics of the laser determined by the device design.

Shekhar Garde, Dean of the RPI School of Engineering, emphasized the prospects of studying quantum phenomena at room temperature.
The study of atmospheric carbon capture in the Mesozoic volcanic regions of central China is the main topic discussed in Nature Nanotechnology. The title of this paper is "The Cohesive Phenomenon in Topological Valley Halls".
Funding from the National Science Foundation and the Office of Naval Research has played an important role in funding this research.

Source: Laser Net

Ähnliche Empfehlungen
  • Atomstack Maker A5 V2: A laser engraving machine suitable for beginners

    In the recent DIY field, innovative and increasingly affordable laser engraving machines have emerged, mainly designed for first-time users in this field. A particularly noteworthy example in this regard is the Atomstack Maker A5 V2 model. This device is known for its versatility and ease of use, making it an ideal choice for beginners in the world of laser engraving.The Atomstack Maker A5 V2 is a...

    2024-01-03
    Übersetzung anzeigen
  • Analysis of Development Prospects and Technological Trends in the Optical Industry

    As a core supporting field of modern technology, the optical industry has broad and diversified development prospects, benefiting from the cross drive of multiple emerging technologies. The following is a systematic analysis from the perspectives of technology trends, application areas, challenges, and opportunities: Core driving forces and growth areas1. Optical communication and 5G/6GDemand ex...

    04-30
    Übersetzung anzeigen
  • Advanced optical giant Schott announces completion of Malaysia factory

    Recently, German optical giant SCHOTT is pleased to announce that its advanced production plant located in Gulim, Kedah, Malaysia has been successfully completed. This milestone event was celebrated with the joint witness of employees, clients, and representatives from the Malaysian Investment Development Authority (MIDA).The completion of the new factory marks a significant increase in Schott's...

    2024-10-16
    Übersetzung anzeigen
  • NLIGHT announces financial performance for the fourth quarter and full year of 2024

    Recently, nLIGHT, a manufacturer of high-power semiconductors and fiber lasers, announced its financial performance for the fourth quarter and full year of 2024.financial summaryTotal revenue: 198.5 million US dollars, a decrease from 209.9 million US dollars in 2023, due to a decline in sales in the laser product department.Operating loss: A loss of $65.6 million, compared to a loss of $46.8 mill...

    03-04
    Übersetzung anzeigen
  • Researchers have captured the strange behavior of laser induced gold

    A new study conducted by the US Department of Energy's SLAC National Accelerator Laboratory has revealed the strange behavior of gold when impacted by high-energy laser pulses.When certain materials are subjected to strong laser excitation, they will quickly disintegrate. But gold is exactly the opposite: it becomes more resilient and resilient. This is because the way gold atoms vibrate together ...

    2024-02-17
    Übersetzung anzeigen