Deutsch

Laser printing on fallen leaves can produce sensors for medical and laboratory use

553
2024-05-16 17:18:22
Übersetzung anzeigen

The manufacturing of sensors through 3D printing combines speed, design freedom, and the possibility of using waste as a substrate. In the circular economy model, various results have been achieved, and typically discarded residues are used as low-cost resources. A research team in Brazil has proposed a highly creative solution that involves printing electrochemical sensors on fallen leaves. The team is led by Bruno Janegitz, Professor and Head of Sensors, Nanopharmaceuticals and Nanostructured Materials Laboratory (LSNANO) at the Federal University of San Carlos (UFSCar), and Thiago Paix ã o, Professor and Head of Electronic Tongue and Chemical Sensor Laboratory (L2ESQ) at the University of S ã o Paulo (USP). This initiative has received support from FAPESP and was emphasized in an article published in the journal ACS Sustainable Chemistry and Engineering.

Janegitz said, "We used CO2 (carbon dioxide) lasers to print designs of interest on leaves through pyrolysis and carbonization. Therefore, we obtained an electrochemical sensor for measuring levels of dopamine and paracetamol. It is very easy to operate. A drop of solution containing one of the compounds is placed on the sensor, and a potentiostat connected to it displays the concentration."

Simply put, the laser beam burns the leaves during the pyrolysis process, converting their cellulose into graphite, which is printed on the leaves in a shape suitable for use as a sensor. During the manufacturing process, the parameters of the CO2 laser, including laser power, pyrolysis scanning rate, and scanning gap, are systematically adjusted to obtain the best results.

Janegitz said, "These sensors have been characterized through morphology and physicochemical methods, allowing for a detailed exploration of the new carbonized surfaces generated on the leaves."

"In addition, the applicability of the sensor was confirmed through testing dopamine and paracetamol in biological and drug samples. For dopamine, the system is effective in the linear range of 10-1200 micromoles per liter, with a detection limit of 1.1 micromoles per liter. For paracetamol, the system has a linear range of 5-100 micromoles per liter, with a detection limit of 0.76."

In tests involving dopamine and paracetamol, as a proof of concept, the electrochemical sensor extracted from fallen leaves achieved satisfactory analytical performance and noteworthy reproducibility, highlighting its potential as a substitute for traditional substrates.

Replacing traditional materials with fallen leaves has produced significant benefits in reducing costs and, most importantly, environmental sustainability. Janegitz said, "These leaves would have been incinerated or at best composted. Instead, they are being used as substrates for high-value devices, which is a significant advancement in the manufacturing of next-generation electrochemical sensors."

Source: Laser Net

Ähnliche Empfehlungen
  • German laser company Marvel Fusion recently raised 62.8 million euros in funding

    Recently, Marvel Fusion, a private German company dedicated to commercializing fusion energy through its own laser technology, announced that it has recently raised 62.8 million euros in Series B funding. This round of investors includes HV Capital, b2venture, Earlybird Venture Capital, Athos Venture, Primepulse, Plural Platform, and Deutsche Telekom. Meanwhile, Marvel Fusion has also received add...

    2024-10-12
    Übersetzung anzeigen
  • Three core processes of laser soldering support the development of PCB electronics industry

    In the field of modern electronic manufacturing, PCB (printed circuit board) serves as the carrier of electronic components. In its manufacturing process, laser soldering technology has become a key link in PCB electronic manufacturing due to its advantages of high precision, high efficiency, and low thermal impact. This article will explore the application of laser soldering technology and its ma...

    2024-04-15
    Übersetzung anzeigen
  • Shanghai Photonics Corporation has made progress in laser welding of structural materials (Ni-28W-6Cr alloy) for new-generation molten salt reactors

    Recently, Yang Shanglu, a researcher at the Laser Intelligent Manufacturing Technology Research and Development Center of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made new progress in laser welding of the fourth-generation reactor-molten salt reactor structural material Ni-28W-6Cr nickel-based superalloy.The research team applied the high power fiber ...

    2023-08-25
    Übersetzung anzeigen
  • The research team describes laser direct writing of single-photon optical fiber integrated multimode storage on a communication band chip

    Figure: Experimental setup.Quantum memory that relies on quantum band integration is a key component in developing quantum networks that are compatible with fiber optic communication infrastructure. Quantum engineers and information technology experts have yet to create such a high-capacity network that can form integrated multimode photonic quantum memories in communication frequency ban...

    2023-08-04
    Übersetzung anzeigen
  • Scientists use the light inside fibers as thin as hair to calculate

    Scientists from Heriot Watt University in Edinburgh, Scotland have discovered a powerful new method for programming optical circuits, which is crucial for the delivery of future technologies such as unbreakable communication networks and ultrafast quantum computers."Light can carry a large amount of information, and optical circuits that use light instead of electricity are seen as the next majo...

    2024-01-20
    Übersetzung anzeigen