Deutsch

Romania Center launches the world's most powerful laser

512
2024-04-01 14:02:09
Übersetzung anzeigen

Are you ready? The signal is out! "
In the control room of a research center in Romania, engineer Antonio Toma has activated the world's most powerful laser, which is expected to make revolutionary progress in various fields from the health sector to space. The laser located in the center near the Romanian capital Bucharest is operated by the French company Thales and utilizes the invention of Nobel laureates.
Gerard Mourou from France and Donna Strickland from Canada were awarded the 2018 Nobel Prize in Physics for using the power of lasers to develop advanced precision instruments in corrective eye surgery and industry.


The Nobel Academy's award speech said, "The sharp laser beam provides us with a new opportunity to deepen our understanding of the world and shape it."

At the center, in front of the screen wall displaying the beam of light, Thomas checked a series of indicators before starting the countdown. On the other side of the glass, a long row of red and black boxes are equipped with two laser systems. 29 year old Toma told Agence France Presse in a recent live media interview, "I won't lie. Sometimes things can become a bit stressful."
"But working here is also very enjoyable. When the international research team arrived at the center, we were happy that we had achieved results," she added.

-"The incredible Odyssey"-
Nobel laureate Muru admitted that he was "deeply moved" by his "incredible adventure" - from where he stayed in the United States for 30 years to achieving this project in Europe. It originated from the European Infrastructure ELI project in the 2000s. 79 year old Muru said, "We start with a glowing seed with very, very little energy, and it will be magnified millions of times.".

Scientists have been committed to creating more powerful lasers.
However, by the mid-1980s, they encountered a bottleneck as they were unable to increase power without damaging the amplified beam. At that time, Muru and his student Strickland invented a technology called Chirped Pulse Amplification (CPA), which could increase power while maintaining strength safety. Its working principle is to timely stretch the ultra short laser pulse, amplify it, and then compress it together again, thereby generating the shortest and strongest laser pulse in the world's history. It has been applied in corrective ophthalmic surgery, but it also opens the way for scientists to continue breaking through the limits of laser power.
Muru said, "We will use these ultra strong pulses to produce more compact and cheaper particle accelerators to destroy cancer cells.".

-Laser Era-
He added that other possible applications include processing nuclear waste by reducing the duration of radioactivity, or cleaning up accumulated debris in space. For Muru, just as the last century was the electronic century, the 21st century will also be the laser century.
The scale of operation of the research center is dazzling.

The system is capable of reaching a peak of 10 petawatts (to the 15th power of 10 watts) in an ultra short period of time on the order of femtosecond (one billionth of a second). Franck Leibreich, Managing Director of Thales Laser Solutions, stated that "450 ton equipment" needs to be carefully installed to achieve "excellent performance levels.".

The high-tech building of the center costs 320 million euros (350 million US dollars), mainly funded by the European Union.
Thales called it the largest scientific research investment in Romanian history.
Meanwhile, countries such as France, China, and the United States are already advancing their own projects to manufacture more powerful lasers.

Source: Laser Net

Ähnliche Empfehlungen
  • Vigo University School of Technology invents laser glass recycling system

    LaserON, a laser industrial application group at the University of Vigo, is leading a European project that aims to revolutionize the glass recycling process by developing a new technology called glass laser conversion, so that everyone can recycle at home. This group is led by Professor Juan Pou and Professor Rafael Comesa ñ a, and is part of Cintecx, leading EverGlass. Its partners come f...

    2024-01-19
    Übersetzung anzeigen
  • Aspen Laser launches patented four wavelength Ascent laser series in the medical equipment industry

    Recently, Aspen Laser, an emerging global leader in the medical equipment industry, announced that after several months of trial operation, it has officially launched the Ascent laser series and is ready for shipment. It is reported that this new therapeutic laser series, with its outstanding 32 watt combined power and unique patented four wave laser technology in the industry, once again demons...

    2024-08-12
    Übersetzung anzeigen
  • Tiny yet Powerful: How Lasers on Chips Change the Game Rules of Photonics

    Chip level ultrafast mode-locked laser based on nanophotonic lithium niobate.Researchers have created a compact mode-locked laser integrated into a nanophotonic platform, capable of generating high-power and ultrafast optical pulses. The breakthrough in miniaturization of MLL technology can significantly expand the application of photonics.Innovation in mode-locked laser technologyTo improve the t...

    2023-12-27
    Übersetzung anzeigen
  • 2Pi Optics has launched a new type of fisheye camera based on its so-called metasurface optics

    2Pi Optics has launched a new type of fisheye camera based on its so-called metasurface optics.The company plans to showcase this technology at the large-scale technology trade show CES 2024 in Las Vegas next week.This company, headquartered in Cambridge, Massachusetts, stated that it has created the world's leading high-resolution fisheye sensor based on optical superlens technology. This technol...

    2024-01-05
    Übersetzung anzeigen
  • Polish and Taiwan, China scientists are committed to new 3D printing dental implants

    Researchers from Wroclaw University of Technology and Taipei University of Technology in China are developing dental implants made from 3D printed ceramic structures connected to metal cores. Due to the use of biodegradable magnesium, bone tissue will gradually grow into such implants."The result will be a composite implant that can replace human teeth. Its scaffold is made of aluminum oxide...

    2024-04-17
    Übersetzung anzeigen