Deutsch

Unlocking visible femtosecond fiber oscillators: progress in laser science

441
2024-03-28 14:05:34
Übersetzung anzeigen

The emergence of ultrafast laser pulses marks an important milestone in laser science, triggering astonishing progress in a wide range of disciplines such as industrial applications, energy technology, and life sciences. Among various laser platforms that have been developed, fiber optic femtosecond oscillators are highly praised for their compact design, excellent performance, and cost-effectiveness, and have become one of the mainstream technologies for femtosecond pulse generation.

However, their working wavelengths are mainly limited to the infrared region, ranging from 0.9 to 3.5 μ m. This in turn limits their applicability in many applications that require visible wavelength light sources. For a long time, expanding compact femtosecond fiber oscillators to new visible light wavelengths has been a challenging but eagerly pursued goal in laser science.

Currently, most visible light fiber lasers use rare earth doped fluoride fibers, such as Pr3+, as effective gain media. Over the years, significant progress has been made in the development of wavelength tunable, high-power, Q-switched, and mode-locked visible light fiber lasers.

However, despite significant progress in the near-infrared field, achieving femtosecond mode locking in visible light fiber lasers remains a highly challenging task. This challenge is attributed to insufficient development of ultrafast optical components for visible light wavelengths, limited availability of high-performance visible light modulators, and extremely normal dispersion encountered in visible light fiber laser cavities.

Recent attention has been focused on near-infrared femtosecond mode-locked fiber oscillators using phase biased nonlinear amplification ring mirrors. PB-NALM eliminates the need for accumulated phase shift in long cavity fibers.

This innovation not only promotes tuning flexibility and long-life operation, but also provides the opportunity to manage intracavity dispersion in a larger parameter space, from normal dispersion state to abnormal dispersion state. Therefore, it is expected to promote the breakthrough of direct femtosecond mode locking in visible light fiber lasers and push fiber femtosecond oscillators towards the visible light band.

According to reports, researchers from the Fujian Key Laboratory of Ultra Fast Laser Technology and Applications at Xiamen University have recently developed a visible light mode-locked femtosecond fiber oscillator and amplifier.

The fiber optic femtosecond oscillator emits red light at 635 nm and adopts a 9-shaped cavity configuration. It uses double clad Pr3+doped fluoride fibers as visible light gain media, adopts visible light wavelength PB-NALM for mode locking, and utilizes a pair of customized high-efficiency high channel density diffraction gratings for dispersion management. The visible self starting mode locking established by PB-NALM directly generates red laser pulses with a pulse duration of 199 fs and a repetition rate of 53.957 MHz from the oscillator.

Accurate control of the spacing between grating pairs can switch the pulse state from dissipative or stretching pulse solitons to traditional solitons. In addition, the chirped pulse amplification system built together with the oscillator greatly improves laser performance, achieving an average output power of over 1 W, a pulse energy of 19.55 nJ, and a pulse duration of 230 fs.

Professor Luo Zhengqian, Director of the Department of Electronic Engineering at Xiamen University, said, "Our research results represent a solid step towards high-power femtosecond fiber lasers that cover the visible spectrum region and may have important applications in industrial processing, biomedical research, and scientific research.".

The author expects that their new solution for generating high-performance visible light femtosecond fiber lasers will lay the foundation for applications such as precision processing of special materials, biomedical, underwater detection, and optical atomic clocks.

Source: Laser Net

Ähnliche Empfehlungen
  • TRUMPF utilizes a laser driven X-ray source to improve electric vehicle batteries

    In the future, electric vehicle battery manufacturers can further improve the durability and performance of electric vehicle batteries through compact X-ray sources. The XProLas development partnership has now begun to develop these laser driven X-ray sources under the leadership of TRUMPF. The first batch of demonstration systems will be completed in 2026. In the future, manufacturers will be abl...

    2024-03-01
    Übersetzung anzeigen
  • Researchers have created an X Lidar lidar to help airports operate during volcanic eruptions

    Engineer and inventor Ezequiel Pawelko is one of the creators of X Lidar, a laser technology that can detect volcanic ash in the atmosphere, draw safe flight paths, and maintain airport operations during volcanic eruptions. Nowadays, he is engaged in other applications such as detecting space debris, monitoring natural resources and fisheries, preventing fires, and drawing radiation and wind maps ...

    2023-12-27
    Übersetzung anzeigen
  • 国内自主研发首套碳化硅晶锭激光剥离设备投产

           近日,从江苏通用半导体有限公司传来消息,由该公司自主研发的国内首套的8英寸碳化硅晶锭激光全自动剥离设备正式交付碳化硅衬底生产领域头部企业广州南砂晶圆半导体技术有限公司,并投入生产。 图:8英寸SiC晶锭激光全自动剥离设备       该设备可实现6英寸和8英寸碳化硅晶锭的全自动分片,包含晶锭上料、晶锭研磨、激光切割、晶片分离和晶片收集,一举填补了国内碳化硅晶锭激光剥离设备领域研发、制造的市场空白,突破了国外的技术封锁,将极大地提升我国碳化硅芯片产业的自主化、产业化水平。       该设备年可剥离碳化硅衬底20000片,实现良率95%以上,与传统的线切割工艺相比,大幅降低了产品损耗,而设备售价仅仅是国外同类产品的1/3。       近年来,碳化硅功率器件在大功率半导体市场中所占的份额不断提高,并被广泛应用于新能源汽车、城市轨道交通、风力发电、高速移动、物联网等一系列领域...

    2024-08-26
    Übersetzung anzeigen
  • How to precisely control the cavity length of gallium nitride based vertical cavity surface emitting lasers?

    Gallium nitride (GaN) vertical cavity surface emitting laser (VCSEL) is a semiconductor laser diode with broad application prospects in various fields such as adaptive headlights, retinal scanning displays, nursing point testing systems, and high-speed visible light communication systems. Their high efficiency and low manufacturing costs make them particularly attractive in these applications.Gall...

    2024-06-12
    Übersetzung anzeigen
  • Hamamatsu Photonics completes construction of new factory area

    Recently, Hamamatsu Photonics in Japan completed the construction of a new building at Miyakoda Manufacturing Co., Ltd. in Hamami ku, Hamamatsu City. The completion ceremony was held on July 29th, and the factory will start full production in November 2024, increasing overall production capacity by 2.5 times.Source: Hamamatsu PhotonicsIt is reported that Hamamatsu Photonics focuses on the developm...

    2024-08-01
    Übersetzung anzeigen