Deutsch

Researchers have discovered a new method to improve the resolution of laser processing

675
2024-03-28 13:52:54
Übersetzung anzeigen

Customized laser beams focused through transparent glass can generate a small dot inside the material. Researchers from Northeastern University have reported a method of using this small spot to improve laser material processing and increase processing resolution.


Their research results are published in the journal Optics Letters.

Laser processing, like drilling and cutting, is crucial in industries such as automobiles, semiconductors, and pharmaceuticals. The pulse width of an ultra short pulse laser source ranges from picoseconds to femtoseconds, and can be accurately processed in the range of micrometers to tens of micrometers. But recent progress requires smaller scales, below 100 nanometers, which is difficult to achieve with existing methods.

Researchers focus on laser beams with radial polarization, known as vector beams. The beam generates a longitudinal electric field at the focal point, resulting in a smaller spot than traditional beams.

Scientists have determined that this process has great potential in laser processing. However, one drawback is that due to the light refraction at the air material interface, the field weakens inside the material, thereby limiting its use.

"We overcame this by using oil immersion lenses to laser process glass substrates," exclaimed Yuichi Kozawa, Associate Professor at the Institute of Advanced Materials Multidisciplinary Research at Northeastern University and co-author of the paper. "Because the refractive indices of oil immersed and glass are almost the same, the light passing through them will not bend."

Further research on the behavior of radially polarized beams under circular focusing indicates that the longitudinal field is greatly enhanced. This enhancement is due to total reflection occurring at high convergence angles on the back between glass and air. By using a circularly polarized beam of light, Kozawa and his colleagues created a small focal point.

From there, they applied this method to processing glass surfaces with ultra short pulse laser beams. A single shot of the converted pulse on the back of the glass substrate will produce a hole with a diameter of 67 nanometers, approximately 1/16 of the wavelength of the laser beam.

"This breakthrough makes it possible to use enhanced longitudinal electric fields for direct material processing with higher accuracy," Kozawa added. "It provides a simple method to achieve processing scales below 100 nanometers and opens up new possibilities for laser nanoprocessing in various industries and scientific fields."

Source: Laser Net

Ähnliche Empfehlungen
  • CinIonic launches a new cinema screen specifically designed for laser theaters

    CinIonic announced the launch of a new cinema screen specifically designed for laser auditoriums. CinIonic Laser Screen 2.4 amplifies the power of laser projection by optimizing efficiency and enhancing screen presentation. This new screen is aimed at becoming the ideal companion for CinIonic Laser and is the first screen product in the CinIonic All Laser Solution portfolio.The CinIonic laser scre...

    2023-09-20
    Übersetzung anzeigen
  • Understanding the "single-mode" and "multi-mode" in cleaning lasers in one article

    In industrial production, cleaning is a crucial step. Traditional cleaning methods, such as mechanical cleaning and chemical cleaning, although can meet production needs to a certain extent, often have problems such as low flexibility and environmental pollution. With the advancement of technology, laser cleaning technology has emerged as a new favorite in the cleaning field due to its high effici...

    05-14
    Übersetzung anzeigen
  • Progress in Research on Transparent Ceramics for 3D Printing Laser Illumination at Shanghai Institute of Optics and Mechanics

    It is reported that the Research Center for Infrared Optical Materials of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made progress in the research of additive manufacturing (3D printing) transparent ceramics for laser illumination.Recently, the Research Center for Infrared Optical Materials of the Shanghai Institute of Optics and Precision Mechanics, Chines...

    2023-10-17
    Übersetzung anzeigen
  • Using Topological Photon Chips to Uncover the Secrets of Open Systems

    Conservation of energy is a fundamental concept in physics that can be used to explain anything from planetary orbits to the internal workings of individual atoms.Energy can be converted into other forms, but the overall energy level is usually considered to vary over time. Therefore, when attempting to describe a system, physicists usually pay attention to ensuring that it is isolated from the su...

    2024-02-02
    Übersetzung anzeigen
  • 20W High Power Fiber Optic Frequency Comb with 10 to 19 Power Outside Ring Frequency Stability

    High power optical frequency combs play a crucial role in nonlinear precision spectroscopy, extreme ultraviolet optical frequency comb generation, nuclear atomic clock research, and other fields. Fiber optic femtosecond lasers are the preferred solution for achieving high power optical frequency combs due to their simple structure, stable performance, and easy amplification. However, due to the un...

    2023-10-20
    Übersetzung anzeigen