Deutsch

Luxiner launches LXR platform to set new standards for industrial laser microfabrication

671
2024-03-25 14:03:24
Übersetzung anzeigen

Luxiner, a globally renowned laser technology leader, proudly launches its latest innovative product, the groundbreaking LXR ultra short pulse laser platform. This cutting-edge technology represents a significant leap in industrial laser processing, providing unparalleled performance, versatility, and reliability.

In today's rapidly changing industrial environment, laser technology plays a crucial role in many fields, from microelectronics and semiconductors to automotive manufacturing and biomedical applications. Realizing the constantly evolving demand for higher precision, faster processing speeds, and more efficient material processing solutions, Luxiner has responded to the challenges by launching the LXR platform.

The LXR platform is designed specifically to meet the needs of modern industrial applications. Featuring a robust design with 24/7 operational readiness, reliable handling, and highly modular architecture that meets the needs of every customer; With its unique requirements, Luxiner's LXR platform has set a new benchmark for industrial USP lasers.

The LXR platform provides ultra short laser energy pulses to ensure high-quality material processing with minimal heat generation. This patented technology ensures precise ablation, minimal thermal damage, and excellent control of laser beam parameters, producing excellent results even in the most demanding applications.

The main functions of the LXR platform include: pulse energy up to 160 μ J: Ensure efficient and accurate material processing in various applications.
Power up to 160 W: promotes fast and efficient laser processing, improving productivity.
Beam quality M2<1.2: Provides excellent beam control, achieving excellent processing quality and accuracy.
Flexible pulse width: From a standard pulse width of 800fs to factory settings up to 12 ps, it can be optimized for different materials and applications.

Supports multiple wavelengths, including 1030 nm, 515 nm, and 343 nm, providing flexibility for various industrial applications.
Full digital control of pulse output: allows for precise customization of laser processing parameters to achieve the desired results.
Standard burst and fast burst modes: support optimization for deep carving, micro machining, surface texture, and more.
The blasting energy can reach up to 0.8 mJ, ensuring efficient and accurate material ablation even in demanding applications.

"We are pleased to bring the LXR platform to the market," said Antonio Raspa, Product Manager of Luxiner Solid State Laser. The unique feature of the LXR series platform lies in its unparalleled control and flexibility in laser pulse output. Its intuitive hardware and software interface enable seamless integration into the production line, simplifying the programming of operating parameters.

Luxiner has earned an excellent reputation in producing powerful and reliable laser sources, and the LXR platform continues this tradition. The LXR platform ensures optimal uptime and productivity, backed by Luxiner's excellent customer support and service.

The development of the LXR platform highlights Luxiner's commitment to innovation, industry collaboration, and deep understanding of customer needs. Luxiner's team of engineers and scientists worked tirelessly to bring this breakthrough technology to the market, setting clear industry standards for USP laser technology.

Source: Laser Net

Ähnliche Empfehlungen
  • Ultrafast laser technology continues to reach new heights

    Ultra short pulse lasers, such as femtosecond lasers, are increasingly becoming easy-to-use plug and play devices suitable for a wide range of industrial and biomedical applications. Fifteen years ago, the volume of these lasers was still very large, requiring daily cleaning of optical components, regular maintenance of cooling water, and continuous optimization of laser parameters. Nowada...

    2023-11-06
    Übersetzung anzeigen
  • Tower and Fortsense have announced the launch of their highly advanced 3D imager for LiDAR

    Recently, Gaota Semiconductor announced the successful development of an advanced 3D imager based on dToF technology for LiDAR applications. The newly developed product FL6031 is based on Tower's 65nm Stacked BSI CIS platform and has pixel level hybrid bonding function. It is the first in a series of products aimed at meeting the needs of numerous deep sensing applications in the automotive, consu...

    2023-09-14
    Übersetzung anzeigen
  • SPIE Optics and Photonics 2025: Plenary Session Evaluation of Organic Materials for Optoelectronics

    The use of organic materials in photonics has given rise to many device innovations for applications in sensing, semiconductors, lasers, and more. The Organic Photonics + Electronics plenary session at SPIE Optics + Photonics 2025, taking place through 7 August in San Diego, California, sampled some current research efforts in this subfield, and looked at developments on the horizon.Ruth Shinar d...

    08-06
    Übersetzung anzeigen
  • Samsung Heavy Industries Developing a Laser High Speed Welding Robot for Liquefied Natural Gas Ships

    South Korea's Samsung Heavy Industry announced on Thursday that it has developed the first laser high-speed welding robot in the maritime field, aimed at significantly improving the construction efficiency of liquefied natural gas (LNG) transport ships.This new technology is specifically designed for rapid welding of thin film panels used in cargo compartments of liquefied natural gas transport sh...

    2023-09-22
    Übersetzung anzeigen
  • Sill Optics launches F-Theta lenses for photovoltaic applications

    The energy transformation has brought us global challenges. In this regard, renewable energy sources such as photovoltaic are crucial. The key to improving the efficiency of photovoltaic power generation is to improve the manufacturing process of solar cells. Laser material processing is used to weld individual batteries into modules, dope selective emitters, and remove very thin antireflective an...

    2023-11-22
    Übersetzung anzeigen