Deutsch

Mitsubishi Electric has launched a light source module for high-capacity laser optical communication in outer space

431
2023-08-24 11:15:32
Übersetzung anzeigen

On August 22nd, Mitsubishi Electric Corporation, a multinational electronics and electrical equipment manufacturing company, announced that it had successfully demonstrated laser optical frequency control using a new light source module, which is a key component of a high-capacity laser optical communication network to be deployed in outer space.

It is reported that this module can generate 1.5 μ The m-wavelength signal was installed on the OPTIMAL-1 nanosatellite jointly developed by industry, academia, and research, and was successfully launched from the International Space Station (ISS) on January 6 this year.

Compared to using traditional large satellites, using nanosatellites enables this demonstration to be carried out at a faster speed and at a lower cost.

Mitsubishi Electric has been developing space based optical technology, which has the potential to increase data capacity (ten times or more), communication speed, and distance compared to systems using radio waves.

Satellite images are increasingly being used to assess the situation in post disaster areas and the condition of remote forest resources. The existing radio wave satellite communication systems are limited in terms of capacity, speed, and distance, so it is necessary to provide new optical systems that improve communication capabilities for faster and higher resolution evaluations from space.

Advanced systems using laser signals are expected to be increasingly adopted, not only because of their superior communication capabilities, but also because they use shorter wavelengths than radio waves, allowing for the use of relatively small and easy to install ground antennas.

Laser communication between satellites requires correction for the "Doppler effect" - the Doppler effect, which is a change in laser optical frequency caused by differences in relative motion speeds between satellites. The new light source module is deployed as the world's first to utilize a wavelength of 1.5 μ The laser frequency can be adjusted to 60 GHz in space, which is enough for "Doppler effect" compensation.

The nanosatellites developed through industry university research cooperation projects require only about one-third of the time required for demonstration in outer space compared to large-scale satellite demonstrations, and the development cost is only one percent of that of large-scale satellite demonstrations.

Takayoshi Fukuyo, CEO of ArkEdge Space Inc., said, "In recent years, the development momentum of nanosatellites has been continuously increasing. Nanosatellites weighing only a few kilograms can be developed and launched at low cost, so they are expected to be used for new applications, such as using a large number of satellites to observe the Earth extensively. The successful demonstration of light source modules on OPTIMAL-1 is expected to drive the deployment of nanosatellites.

Professor Yoshihide Aoyanagi from the University of Fukui said, "The conditions in outer space, including radiation, vacuum, and temperature, create harsh environments for equipment, so demonstrating the ability to operate in space is crucial for the development of satellites. I hope that the successful demonstration of OPTIMAL-1 will promote further progress in the industrial use of nanosatellites.

Future development

Mitsubishi Electric will propose demonstration technologies for large-scale space development projects. In addition, the company will promote nanosatellites as an important demonstration platform for space-related research and development through industry university research cooperation. Mitsubishi Electric will continue to pursue technological development aimed at achieving space-based laser optical communication as soon as possible.

Source: OFweek

Ähnliche Empfehlungen
  • NASA plans to use lasers to measure the impact of exhaust gases on the lunar surface during landing, in order to plan lunar landings more effectively

    Recently, NASA's official website showed that a research team at the University of Central Florida has tested an instrument called Ejecta STORM, which aims to measure the size and velocity of surface particles generated by exhaust gases from rocket powered landers on the moon or Mars.According to NASA, when a spacecraft lands on the moon or Mars, rocket exhaust plumes can produce efflorescent ejec...

    2023-10-31
    Übersetzung anzeigen
  • Feasibility Study on Composite Manufacturing of Laser Powder Bed Melting and Cold Casting

    It is reported that researchers from the Technical University of Munich in Germany have reported a feasibility study on the composite manufacturing of EN AC-42000 alloy by combining laser powder bed melting and cold casting. The related research titled "Feasibility study on hybrid manufacturing combining laser based powder bed fusion and chill casting on the example of EN AC-42000 alloy" was publi...

    2024-06-06
    Übersetzung anzeigen
  • Cambridge University researchers use lasers to "heat and strike" 3D printed steel

    According to the University of Cambridge, researchers have developed a new method for 3D printing metal, which can help reduce costs and more effectively utilize resources. This method, developed by a research team led by the University of Cambridge, allows structural modifications to be "programmed" into metal alloys during 3D printing - fine-tuning their performance without the need for thousand...

    2023-11-03
    Übersetzung anzeigen
  • Ecken develops a new type of iron silicon powder for 3D printing of motors

    Through the SOMA project funded by the European Union, organic silicon material expert Aiken has collaborated with research partners and clients to develop a new specialized iron silicon powder that can more efficiently 3D print motor components.Yesterday's electric motor was usually made by cutting and shaping parts from a metal plate. 3D printing can fundamentally improve efficiency and...

    2024-01-20
    Übersetzung anzeigen
  • ALPD laser projection technology enters the Middle East market

    With the continuous growth of user numbers and usage duration, the quality and reliability of the ALPD laser projection solution independently developed by the global laser display leader Guangfeng Technology (688007. SH) have been increasingly recognized by more and more users.It is reported that VOX Cinemas, a well-known cinema line in the Middle East, has also joined the ALPD laser projection s...

    2024-08-07
    Übersetzung anzeigen