Deutsch

Mitsubishi Electric has launched a light source module for high-capacity laser optical communication in outer space

172
2023-08-24 11:15:32
Übersetzung anzeigen

On August 22nd, Mitsubishi Electric Corporation, a multinational electronics and electrical equipment manufacturing company, announced that it had successfully demonstrated laser optical frequency control using a new light source module, which is a key component of a high-capacity laser optical communication network to be deployed in outer space.

It is reported that this module can generate 1.5 μ The m-wavelength signal was installed on the OPTIMAL-1 nanosatellite jointly developed by industry, academia, and research, and was successfully launched from the International Space Station (ISS) on January 6 this year.

Compared to using traditional large satellites, using nanosatellites enables this demonstration to be carried out at a faster speed and at a lower cost.

Mitsubishi Electric has been developing space based optical technology, which has the potential to increase data capacity (ten times or more), communication speed, and distance compared to systems using radio waves.

Satellite images are increasingly being used to assess the situation in post disaster areas and the condition of remote forest resources. The existing radio wave satellite communication systems are limited in terms of capacity, speed, and distance, so it is necessary to provide new optical systems that improve communication capabilities for faster and higher resolution evaluations from space.

Advanced systems using laser signals are expected to be increasingly adopted, not only because of their superior communication capabilities, but also because they use shorter wavelengths than radio waves, allowing for the use of relatively small and easy to install ground antennas.

Laser communication between satellites requires correction for the "Doppler effect" - the Doppler effect, which is a change in laser optical frequency caused by differences in relative motion speeds between satellites. The new light source module is deployed as the world's first to utilize a wavelength of 1.5 μ The laser frequency can be adjusted to 60 GHz in space, which is enough for "Doppler effect" compensation.

The nanosatellites developed through industry university research cooperation projects require only about one-third of the time required for demonstration in outer space compared to large-scale satellite demonstrations, and the development cost is only one percent of that of large-scale satellite demonstrations.

Takayoshi Fukuyo, CEO of ArkEdge Space Inc., said, "In recent years, the development momentum of nanosatellites has been continuously increasing. Nanosatellites weighing only a few kilograms can be developed and launched at low cost, so they are expected to be used for new applications, such as using a large number of satellites to observe the Earth extensively. The successful demonstration of light source modules on OPTIMAL-1 is expected to drive the deployment of nanosatellites.

Professor Yoshihide Aoyanagi from the University of Fukui said, "The conditions in outer space, including radiation, vacuum, and temperature, create harsh environments for equipment, so demonstrating the ability to operate in space is crucial for the development of satellites. I hope that the successful demonstration of OPTIMAL-1 will promote further progress in the industrial use of nanosatellites.

Future development

Mitsubishi Electric will propose demonstration technologies for large-scale space development projects. In addition, the company will promote nanosatellites as an important demonstration platform for space-related research and development through industry university research cooperation. Mitsubishi Electric will continue to pursue technological development aimed at achieving space-based laser optical communication as soon as possible.

Source: OFweek

Ähnliche Empfehlungen
  • Topological high-order harmonic spectroscopy in Communications Physics

    It is reported that researchers from the University of Salamanca in Spain have demonstrated a high-order harmonic spectroscopy scheme generated by the interaction between a structured driving beam and a crystal solid target. This work promotes the topological analysis of high-order harmonic fields as a spectroscopic tool to reveal nonlinearity in the coupling of light and target symmetry. The rele...

    2024-01-15
    Übersetzung anzeigen
  • Scientists propose new methods to accelerate the commercialization of superlens technology

    Superlenses are nano artificial structures that can manipulate light, providing a technique that can significantly reduce the size and thickness of traditional optical components. This technology is particularly effective in the near infrared region, and has great prospects in various applications, such as LiDAR, which is called "the eye of autonomous vehicle", mini UAV and blood vessel detector.D...

    2024-03-29
    Übersetzung anzeigen
  • Innovative laser based rain enhancement project launched by UAEREP and DERC teams

    Recently, the UAE Rainfall Enhancement Scientific Research Program launched a groundbreaking project with Dr. Guillaume Matras and his team from the Directional Energy Research Center of the Institute of Technology Innovation, aiming to address the challenge of global water shortage through advanced technology. This collaboration marks an important milestone in the field of rainfall enhancement sc...

    2024-03-02
    Übersetzung anzeigen
  • The birth of multi photon 3D laser printing technology: printing millions of particles within 1 second

    Multi photon 3D laser printing technology, as a disruptive micro manufacturing technology, is facing two major challenges: speed and material compatibility. However, the latest research has made breakthrough progress, successfully increasing printing speed tenfold while maintaining excellent detail accuracy.In this remarkable study, scientists abandoned the traditional single beam printing method ...

    2024-04-19
    Übersetzung anzeigen
  • Coherent's first global manufacturing center in India will focus on the development, production and service of lasers, optical networking components and systems

    Coherent, a global laser giant, has signed a tripartite cooperation agreement (MoU) with the Indian Institute of Technology Madras Research Park (IIT MRP) and Guidance Tamil Nadu Investment Promotion Centre.Coherent will establish its first global Manufacturing Centre (CoE) for laser applications at IIT Madras Research Park, which will focus on R&D, production and services for lasers, optical ...

    2023-09-07
    Übersetzung anzeigen