Deutsch

Vigo University School of Technology invents laser glass recycling system

870
2024-01-19 14:56:11
Übersetzung anzeigen

LaserON, a laser industrial application group at the University of Vigo, is leading a European project that aims to revolutionize the glass recycling process by developing a new technology called glass laser conversion, so that everyone can recycle at home. This group is led by Professor Juan Pou and Professor Rafael Comesa ñ a, and is part of Cintecx, leading EverGlass. Its partners come from Slovakia, Germany, and France, as well as representatives from CSIC's Spain. The project, with a duration of three years and a budget of nearly 3 million euros, was selected in the public solicitation of EIC Pathfinder for Horizon Europe.

Professor Juan Pou explained that the current glass recycling process uses technology based on large-scale facilities, which centralize the process. This means that melting several tons of glass using inflexible processes requires high energy consumption, as well as the cost of transporting the glass to large recycling plants. EverGlass suggests developing a new technology based on the use of laser technology for on-site glass recycling. Researchers explain that through this approach, it is possible to produce customized or technological products with lower energy consumption, lower carbon dioxide emissions into the atmosphere, and lower transportation costs.

Researchers explain that users will send waste into new machines and choose the new products they want to obtain. "This will mean a shift from centralized recycling concepts to distributed recycling concepts, in which people will play a crucial role."
Everglass is one of the 53 projects selected by the European Innovation Commission.

Source: Laser Net

Ähnliche Empfehlungen
  • New photonic nanocavities open up new fields of optical confinement

    In a significant leap in quantum nanophotonics, a team of European and Israeli physicists introduced a new type of polarized cavity and redefined the limits of light confinement. This groundbreaking work was detailed in a study published yesterday in Natural Materials, showcasing an unconventional photon confinement method that overcomes the traditional limitations of nanophotonics.For a long time...

    2024-02-12
    Übersetzung anzeigen
  • Researchers use lasers to measure and manipulate magnetic ripple interactions

    One vision for computing the future is to use ripples in magnetic fields as the fundamental mechanism. In this application, magnetic oscillators can be comparable to electricity and serve as the foundation of electronic products.In traditional digital technology, this magnetic system is expected to be much faster than today's technology, from laptops and smartphones to telecommunications. In quant...

    2024-03-05
    Übersetzung anzeigen
  • Fujitsu collaborates to research and develop multi band wavelength fiber optic transmission technology

    Recently, Fujitsu and KDDI research company have successfully developed a high-capacity multi band wavelength multiplexing transmission technology using installed optical fibers.The new technology of the two companies can transmit wavelengths beyond the C-band by using batch wavelength conversion and multi band amplification technology.Expanding transmission capacity in remote areasTwo companies h...

    2023-12-05
    Übersetzung anzeigen
  • BWT 969nm semiconductor pump source

    Semiconductor laser pump sources, especially those with a wavelength of 969nm, have become the preferred choice for high-power/high peak energy disc lasers due to their reduced quantum losses and heat generation.The 3000W 969nm fiber coupled semiconductor laser system launched by BWT uses 800 μ m NA0.22 fiber to output flat top optical energy distribution, combining lightweight and excellent optic...

    05-09
    Übersetzung anzeigen
  • An efficient femtosecond pulse amplification technique for extracting the maximum stored energy in fiber laser amplifiers

    The well-known journal Optica published a paper in November 2024 titled "Near complete extraction of maximum stored energy from large core fibers using coherent pulse stacking amplification of femtosecond pulses"The authors of the paper were the University of Michigan, Lawrence Berkeley National Laboratory, Peking University, and the German Institute of Synchrotron Radiation.The specific technique...

    2024-11-13
    Übersetzung anzeigen