Deutsch

Scientists develop high-power fiber lasers to power nanosatellites

813
2024-01-18 16:03:41
Übersetzung anzeigen

The use of lasers in space is a reality. Although radio waves have been the backbone of space communication for many years, the demand for faster transmission of more data has made these lighter, more flexible, and safer infrared rays the future of space communication.

Recently, WipThermal is a European project dedicated to developing groundbreaking solutions for wireless energy transmission in the field of microsatellite power for space exploration. The Institute of Systems and Computer Engineering, Technology and Science is one of the five partners in this project, focusing on the development of high-power fiber lasers. The Institute of Advanced Materials, Nanotechnology, and Photonics Physics and the Faculty of Science at the University of Porto are the entities responsible for coordinating this project.

The research team demonstrated the solution at an air force base in the west coast city of Aveiro, Portugal. Orlando Fraz ã o, a researcher at the INESC TEC Center for Applied Photonics, gave a "very positive evaluation" of the results of the project. "We can increase our understanding of high-power lasers and develop new fiber lasers with various potential applications."

Lasers developed by Portuguese research and development institutes are particularly important in space exploration. Fiber optic communication, where light is used to transmit signals, is a relevant choice in scenarios such as space communication.

"Our role in the alliance is focused on developing a high-power laser entirely utilizing fiber optics, with a working range of 1550 nanometers and a maximum power of 40 watts. In addition, we have designed a telescope that can simultaneously illuminate 27 thermoelectric sensors using a series of lenses," said FCUP researchers and professors.
In the final demonstration of WipThermal at San Jacinto Air Force Base, researchers were able to achieve a power output of 20 watts to power thermoelectric sensors. "Future development may include converting these lasers into pulsed lasers to achieve power close to kilowatts," added Orlando Frazzo.

"The main goal is to develop continuous emission lasers to obtain sufficient power and generate temperature gradients in thermoelectric systems. The use of lasers in space is a reality; however, lasers need to be more careful as they are instruments that can be used for military purposes. We are trying to understand which types of lasers and which functions can be used for academic purposes or as commercial solutions," said the researchers.

"Power" is one of the key words in the project coordinated by the University of Porto. The main goal of WipThermal is to create an innovative wireless energy transfer system to charge the energy storage components used in CubeSat technology.

This is crucial: with the advancement of CubeSat technology, the energy demand in this niche market is also increasing, requiring larger solar panels, efficient energy storage systems, and other energy transmission and collection systems. During the demonstration, the team used a high-power laser to charge the cube satellite. This very small satellite is equipped with a thermoelectric sensor developed by IFIMUP, which can absorb 1500 nanometers of light, thereby improving charging efficiency.

According to Orlando Frasan, it is "too early" to understand the potential impact of the work carried out within the project scope on the future of the industry. However, using WipThermal learning allows researchers to focus on a new European project called Transition. "In this new project, we have provided a business model for the idea of using laser charging," concluded Orlando Frasan.

Source: Laser Net

Ähnliche Empfehlungen
  • Accelerating electrons by emitting laser light into a nanophotonic cavity

    The laser driven particle accelerator on silicon chips was created by two independent research groups. With further improvements, this dielectric laser accelerator can be used in medicine and industry, and even in high-energy particle physics experiments.Accelerating electrons to high energy is usually accomplished over long distances in large and expensive facilities. For example, the electron ac...

    2023-10-28
    Übersetzung anzeigen
  • Laser giant announces launch of new fiber laser platform

    Recently, Coherent Corp. announced the launch of the EDGE FL TM high-power fiber laser series, tailored specifically for cutting applications in the machine tool industry. The power levels of the EDGE FL series range from 1.5kW to 20kW, redefining the balance between value and performance to meet the growing demand for high-power, reliable laser sources in fiber laser cutting.With the increasing d...

    2024-10-23
    Übersetzung anzeigen
  • Fiber laser array for single pixel imaging is expected to achieve remote detection

    Single pixel imaging (SPI) is a novel computational imaging technique that has been widely studied in recent years. This technology only uses single pixel detectors without spatial resolution to obtain spatial information of targets.It has unique advantages and compensates for the shortcomings of traditional imaging technologies based on array detectors, such as relatively immature or expensive ar...

    2024-05-15
    Übersetzung anzeigen
  • HP100A-50KW-GD laser power detector for measuring extremely high power laser beams

    The HP100A-50KW-GD laser power detector is mainly designed for manufacturers of high-power lasers and laser systems, factories that use high-power lasers to cut thick metal parts, and military applications.The HP100A-50KW-GD adopts a gold reflector cone and a reduced back reflection geometry, which can capture 97% of incident light and process up to 50 kW of continuous laser power. The back reflec...

    2024-01-16
    Übersetzung anzeigen
  • Automated methods for background estimation in laser spectroscopy

    A new automated method for spectral background estimation in laser spectroscopy ensures the accuracy of quantitative analysis with minimal human intervention.When using laser-induced breakdown spectroscopy in spectral analysis, scientists may encounter various obstacles. The most common challenge faced by scientists when conducting elemental analysis is to optimize the interaction between the lase...

    2023-11-24
    Übersetzung anzeigen