Deutsch

CO2 laser cutting machine for battery shell shaped parts: an innovative tool in energy technology manufacturing

864
2023-12-25 14:01:12
Übersetzung anzeigen

The development of new energy technology has made battery technology the engine for advancing clean energy. In battery manufacturing, the cutting of battery shell shaped parts is a crucial step. CO2 laser cutting machines have become an innovative tool for promoting the development of this field due to their high efficiency and precision. This article will delve into the important characteristics of this laser technology and its key role in battery manufacturing.

The manufacturing of battery shell shaped parts involves complex shapes and contours, and traditional cutting methods are difficult to meet high-precision and shaped requirements. CO2 laser cutting achieves precise and clear cutting of various irregular parts through highly focused laser beams. This high precision directly affects the quality and performance of battery packaging, making the battery more reliable under extreme conditions.

CO2 laser cutting machines have a high level of automation. With the help of advanced CNC technology, automatic cutting is achieved through preset programs without the need for complex manual operations. Improve production efficiency while reducing the impact of human factors, ensuring the consistency and quality of battery shell shaped parts.

The thermal impact during laser cutting is minimal, reducing material thermal deformation and maintaining cutting edge accuracy. This is a significant breakthrough in the manufacturing of batteries with high packaging requirements.

CO2 laser cutting machines also face challenges in application, such as high investment costs and operational difficulties. The industry needs to work together to increase research and development promotion efforts and promote its widespread application in the field of battery manufacturing.

Source: Laser Net

Ähnliche Empfehlungen
  • A new type of flexible reflective mirror can improve the performance of X-ray microscopy

    A research team in Japan has designed a flexible and shapable X-ray reflector, achieving significant accuracy and higher stability at the atomic level.This new technology, developed by Satoshi Matsuyama and Takato Inoue from the Graduate School of Engineering at Nagoya University, in collaboration with the Japanese Institute of Physical and Chemical Research and JTEC Corporation, improves the perf...

    2024-05-06
    Übersetzung anzeigen
  • Export of Pentium Laser Automation Production Line to Japan

    Recently, several large trucks from the Wenzhou factory of Pentium Laser were lined up and ready to go. The high-power and high-speed laser cutting automation production line developed and produced by Pentium Laser has been strictly inspected and accepted by Japanese customers for 15 days and 24 hours of uninterrupted operation. Today, it was loaded and sent to Japan. This laser cutting automati...

    2024-12-06
    Übersetzung anzeigen
  • Laser&Photonics Reviews New Type Quartz Crystal Space Harmonic Modulation for Efficient Vacuum UV Laser

    Professor Zhang Huaijin and Yu Haohai from the Institute of Crystal Materials of Shandong University (the State Key Laboratory of Crystal Materials) proposed a spatial harmonic modulation strategy, which realizes the phase matching conditions that can be manipulated artificially in the new quartz crystal, and realizes the effective frequency doubling within the VUV range. The relevant research is ...

    2023-08-30
    Übersetzung anzeigen
  • Scientists develop flat-topped laser beams to overcome Gaussian distribution limitations

    The beam emitted by almost all laser systems follows the Angle pattern of Gaussian distribution. The Gaussian irradiance distribution means that irradiance has a smooth peak at the center point and slowly declines toward the edge. In theory, the irradiance level of a Gaussian distribution can never reach zero, which means that the distribution can expand indefinitely. This phenomenon in the laser ...

    2023-08-04
    Übersetzung anzeigen
  • Scientists have developed a palm sized femtosecond laser using a glass substrate

    Researchers at the Federal College of Technology in Lausanne (EPFL) have shown that femtosecond lasers suitable for palm size can be manufactured using glass substrates.Can femtosecond lasers made entirely of glass become a reality? This interesting question prompted Yves Bellouard, the head of the Galata laboratory at the Federal Institute of Technology in Lausanne, to embark on a journey after y...

    2023-10-04
    Übersetzung anzeigen