Deutsch

Laser engraving: Researchers have created a revolutionary technology

820
2023-11-24 14:16:34
Übersetzung anzeigen

Recently, a group of researchers from the University of Cambridge developed an innovative method of using high-energy lasers to improve 3D printing of metals. This discovery has the potential to change the way we design and manufacture complex metal objects.

3D printing has completely changed the landscape of the manufacturing industry. However, it faces obstacles, especially in terms of the characteristics of metals. Laser engraving has emerged as an innovative solution. This method can deposit a layer of metal powder and then fuse it together through laser. This process will generate complex metal objects. However, without precise management, these objects may reduce quality. Therefore, laser engraving has become the key to ensuring the integrity and performance of the finished product.

Enhancing Metal in 3D Printing through Laser Engraving

In 3D printing, traditional metal processing methods are not always applicable. This is where laser engraving comes in handy. The Cambridge team did not use traditional heating and beating techniques, but instead chose a laser that directly changes the metal crystal structure on the object. This process enhances the strength of the metal and reduces its brittleness, like a microscopic and precise hammer.

Thoroughly changing metal processing

The inspiration for laser carving comes from the metal manufacturing methods of our ancestors. By alternately using laser processing and untreated areas, researchers can finely control the characteristics of objects. According to Dr. Matteo Seita, this technology can reduce the cost of metal 3D printing. It promises more sustainable and simpler production, possibly eliminating low-temperature treatment.

In short, laser engraving represents an important progress in metal 3D printing. It can create complex metal objects with enhanced properties. This innovation has led to more efficient and sustainable manufacturing, redefining the use of metals in many engineering applications.

The potential of laser engraving goes far beyond simple manufacturing. In the fields of aerospace, automotive, and medicine, it is used to produce lighter and more durable parts. The accuracy of the laser reduces material waste and helps to utilize resources more wisely. By optimizing material properties, the service life of products can be extended, thereby promoting a circular economy.
In addition, this technology opens up new possibilities in design. Designers and engineers can explore forms that were previously inaccessible. This creative freedom may bring unexpected innovation in multiple fields.

In addition, laser engraving has stimulated research and development. Scientists can try new alloys and composite materials to break through the boundaries of material performance. These explorations may lead to the discovery of revolutionary materials with different applications.

Source: Laser Network

Ähnliche Empfehlungen
  • Femtosecond laser-induced plasticity of copper oxide nanowires

    It is reported that researchers from the University of Waterloo in Canada have reported a study on the plasticity of copper oxide nanowires induced by femtosecond laser. The related research was published in Applied Surface Science under the title "Femtosecond laser induced plasticity in CuO nanowires".Metal oxide nanowires are ideal materials for manufacturing nanodevices, especially strain senso...

    2024-07-15
    Übersetzung anzeigen
  • New type of "dynamic static dual sensing" charge coupled phototransistor

    With the development of cutting-edge technologies such as automatic guidance and embodied intelligence, machine vision has put forward higher requirements for image acquisition, requiring precise recording of static images and the ability to sensitively capture dynamic changes in the scene. The existing dynamic and active pixel sensor technology integrates two functions: dynamic event detection an...

    04-17
    Übersetzung anzeigen
  • Graphene terahertz absorber and graded plasma metamaterials

    Optical metamaterials are an effective way to utilize their superior photon capture capabilities. Therefore, perfect absorbers can be achieved through nanoscale resonant plasmas and metamaterial structures.Metamaterial perfect absorbers (MPAs) are typically composed of periodic subwavelength metals (such as plasma superabsorbers) or dielectric resonance units. Compared with static passive physical...

    2024-05-20
    Übersetzung anzeigen
  • High sensitivity visualization of ultrafast carrier diffusion using a wide field holographic microscope

    A sketch of the imaging and holographic parts of a transient holographic microscope, including a pulse sequence, to illustrate the signal modulation method. By imaging the pinhole array at the sample position, a diffraction limited excitation spot array can be created, allowing for the simultaneous collection of transient data around 100 excitation spots.Femtosecond transient microscopy is an impo...

    2023-12-25
    Übersetzung anzeigen
  • Researchers have developed a new type of frequency comb that is expected to further improve the accuracy of timing

    The chip based device, known as the frequency comb, measures the frequency of light waves with unparalleled accuracy, completely changing timing, detection of exoplanets, and high-speed optical communication.Now, scientists and collaborators from the National Institute of Standards and Technology in the United States have developed a new method for manufacturing combs, which is expected to improve...

    2024-03-15
    Übersetzung anzeigen