Deutsch

Creating Laser Sensors with Soap Bubbles: Discovery of Game Changing Rules

732
2023-11-20 14:22:03
Übersetzung anzeigen

Scientists from the University of Ljubljana in Slovenia have made groundbreaking discoveries and discovered a new innovative application of soap bubbles. By transforming these seemingly simple entities into laser sensors, they unleash the potential to detect electric fields and pressures. This extraordinary development has opened the door to various possibilities.

Researchers at the University of Ljubljana use regular hand sanitizers or bubble mixtures suitable for children to create bubble lasers. By adding a small amount of fluorescent dye to the mixture, they can generate laser light from within the bubbles. Unlike traditional lasers that rely on mirrors for amplification, the internal volume of bubbles becomes a decisive factor in this new laser technology. This unique characteristic provides the necessary space for light to reflect back and forth, which is a key component of lasers.

The addition of fluorescent dyes enables bubbles to be used as amplifiers of light. When illuminated, the dye emits light, forming the basic components required for laser generation. Researchers use optical fibers and focusing lenses to guide external light onto bubbles. This triggers the bubble to generate its own laser.

An important aspect of this breakthrough is the extraordinary sensitivity of bubble lasers. They can detect pressure changes as small as 0.001% of atmospheric pressure. Even without thunderstorms generating electricity, they can sense the electric field in the atmosphere on clear days.

The application of this technology is extensive and exciting. The team creatively combined "micro ring lasers" together, opening up new possibilities for future development. The results of this discovery have sparked the interest and enthusiasm of experts in the field, who believe that it may lead to the emergence of various new applications.

FAQ:
Q: How do researchers convert soap bubbles into laser sensors?
Answer: Researchers added a small amount of fluorescent dye to ordinary hand sanitizers or bubble mixtures suitable for children, creating a medium for laser generation.

Q: How does a bubble laser work?
Answer: The internal volume of the bubble, coupled with the addition of fluorescent dyes, allows the bubble to serve as an amplifier of light. External light triggers bubbles to generate their own laser.

Q: What are the unique features of these bubble lasers?
Answer: Bubble lasers have unprecedented sensitivity and can detect pressure changes as low as 0.001% of atmospheric pressure. Even on sunny days, they can sense electric fields in the atmosphere without generating electricity from thunderstorms.

Q: What are the potential applications of bubble lasers?
Answer: This discovery opens the door to a wide range of new applications that need to be explored and developed.

Source: Laser Network

Ähnliche Empfehlungen
  • Wearable Breakthrough! A rubber like deformable energy storage device using laser precision manufacturing

    Recently, foreign researchers have made remarkable breakthroughs in the field of flexible energy storage devices, successfully developing a small energy storage device that can stretch, twist, fold, and wrinkle freely. This significant achievement has been published in the journal npj Flexible Electronics.With the booming development of wearable technology, the demand for energy storage solutions ...

    2024-04-26
    Übersetzung anzeigen
  • German research institute develops a new nanosecond laser process

    Recently, the Fraunhofer Institute (HHI) has developed a technology for processing aluminum alloy materials using reactive gas assisted nanosecond lasers, which can be used to produce electronic box samples for spacecraft manufacturing. This development project is part of the NanoBLAST project, in close collaboration with thermal engineering company Azimut Space GmbH, aimed at manufacturing surfac...

    2024-09-10
    Übersetzung anzeigen
  • Changing Optical Design: How Multi scale Simulation Improves the Efficiency of Modern Devices

    Optical equipment is an integral part of technologies such as data centers and autonomous vehicle, which are constantly developing to meet the needs of complex applications. The challenge faced by designers is to manipulate light at the wavelength scale to achieve the required optical properties, which requires precision at both the nano and macro scales. Nanoscale structures, such as those on LED...

    2024-03-02
    Übersetzung anzeigen
  • Lidar manufacturer RAYZ has completed a round A financing of nearly 100 million yuan

    Recently, RAYZ, a leading research and production company for high-performance LiDAR, announced the successful completion of the A-round financing. This round of financing was led by SMIC Juyuan, and well-known institutions such as Juntong Capital, Feitu Capital, Qiandao Investment, and Qiyu Chuangying also participated in this round of financing. The new round of financing will be used for the re...

    2023-10-20
    Übersetzung anzeigen
  • Scientists build high-power cladding-pumped Raman fiber laser in 1.2 μm band

    Laser sources operating in the 1.2 μm band have some unique applications in photodynamic therapy, biomedical diagnostics, and oxygen sensing. In addition, they can be used as pump sources for mid-infrared optical parameter generation and visible light generation through frequency doubling.Laser generation in the 1.2 μm band has been achieved by different solid-state lasers, including semicon...

    2024-01-31
    Übersetzung anzeigen