Deutsch

Laser assisted detection of past climate in ice cores

173
2023-11-01 15:15:57
Übersetzung anzeigen

Around the poles, ice accumulated over millions of years can reach depths of several kilometers. The undisturbed deep ice preserves information about the past. The air bags and particles trapped in the ice tell scientists what the atmosphere used to be like. This has aroused great interest among paleoclimatologists in glacier ice cores.

By regularly sampling the ice core at its depth, they can reconstruct the past climate and its evolution over time. Like many other elements, hydrogen and oxygen have rarer and heavier variants or isotopes. Due to the fact that lighter variants are more prone to evaporation, the ratio of heavy to light isotopes of hydrogen and oxygen isotopes in the ice core can represent the temperature at which ice formed.

However, as researchers delve deeper, they discover older ice layers that are only a few millimeters thin each year. This type of ice is difficult to study using existing methods that provide centimeter level resolution. For example, a method based on laser ablation can violently shake the surface of an ice core. This is very similar to evaporation and can disrupt the ratio of isotopes, thereby limiting the resolution of laser ablation.

In a study published in the Journal of Glaciology, researchers at the Seiko Center of the Japanese Institute of Physics and Chemistry reported a laser melting method to study finer ice core slices. It can analyze stable water isotopes in ice cores as thin as three millimeters, "said Yuko Motizuki, the corresponding author of the study.

Motizuki and his team have developed a laser melting sampler that can emit lasers through optical fibers. When a laser hits a specific point on the ice core, it will melt the ice into water. The nozzle connected to the end of the optical fiber extracts molten water into a stainless steel vial. But then the researchers encountered another challenge - laser heating of the sample and changing isotope levels.
To avoid this situation, the research team carefully optimized the laser power, the speed at which the nozzle cuts through the ice layer, and the speed at which the melted sample is extracted by vacuum. The system achieves a delicate balance between speed and heat, allowing for rapid melting of ice below boiling point without interfering with isotopes, thereby achieving more accurate measurements.

Next, they validated the practicality of the laser melting method by conducting tests on ice cores at Dome Fuji, a Japanese research station in Antarctica. They recorded 51 observations at intervals of 3 millimeters at depths exceeding 90 meters. Although this depth was chosen to facilitate validation using other methods, with its higher resolution, the new method will enable paleoclimatologists to study past climates from deeper and older ice cores.

Imagine a dramatic, one-time event that quickly changed the temperature in the past. Although such an event may generate great interest, it is difficult to determine when it actually occurred without addressing past temperatures every year. The new method pushes back the time range until researchers are able to detect such events, and if the event occurred in the recent past, more accurately determines when it occurred.

In addition to unexpected events, this method will also enhance the understanding of natural solar changes. The heat radiated by the sun changes periodically, affecting the temperature on Earth. By determining the annual temperature in the distant past, scientists can better distinguish between temperature changes caused by solar activity and temperature changes caused by anthropogenic global warming.

Studying past climates also provides clues for the future. If we understand past natural changes, we can more accurately predict the future of global warming, "Motizuki said.

Source: Laser Network




Ähnliche Empfehlungen
  • Laser induced 2D material modification: from atomic scale to electronic scale

    Background IntroductionTwo dimensional materials have attracted widespread attention due to their atomic level thickness and unique properties, such as high binding energy, tunable bandgap, and new electronic degrees of freedom (valley electronics). They have many application prospects in fields such as microelectronics, nanophotonics, and nanoenergy. Various two-dimensional materials have their o...

    2024-02-23
    Übersetzung anzeigen
  • Laser cladding method improves the surface performance of parts

    Laser cladding, also known as laser metal deposition, is a process of depositing one material onto another.When the laser beam scans the target surface, metal powder or wire flow is fed into the molten pool formed by the laser beam, thereby producing the required material coating.The laser cladding method improves the surface properties of the parts, such as wear resistance, and allows for the rep...

    2023-12-28
    Übersetzung anzeigen
  • The Science Island team has made new progress in detecting atmospheric formaldehyde

    Recently, Zhang Weijun, a research team of the Anguang Institute of the Chinese Academy of Sciences, Hefei Academy of Materials, made new progress in atmospheric formaldehyde detection, and the related achievements were published on the international TOP journal Sensors and Actors: B. Chemical under the title of "Portable highly sensitive laser absorption spectrum formaldehyde sensor based on comp...

    2023-09-21
    Übersetzung anzeigen
  • Laser driven leap forward: the next generation of magnetic devices for controlling light is born

    Recently, a new laser heating technology developed by a Japanese research group has paved the way for advanced optical communication equipment by integrating transparent magnetic materials into optical circuits.This breakthrough was recently published in the journal Optical Materials. It is crucial for integrating magneto-optical materials and optical circuits, which has been a significant long-te...

    2023-12-21
    Übersetzung anzeigen
  • The output power of high power femtosecond laser breaking through the key bottleneck of average power can reach the order of 100 watts

    High energy, high average power femtosecond laser due to the attosecond high order harmonic generation, precision processing and manufacturing, biomedical and national defense and other fields of extensive application needs, is the forefront of ultrafast super laser technology research in the past decade.Especially fiber laser due to stable and reliable operation characteristics, compact structure...

    2023-09-04
    Übersetzung anzeigen