Deutsch

It is expected that the global industrial laser system market size will reach 32.2 billion US dollars by 2028, and the Asia Pacific region's investment share in laser technology will continue to rise

977
2023-08-10 18:02:44
Übersetzung anzeigen

According to a latest overseas market research report, it is expected that the global industrial laser system market size will reach approximately 32.2 billion US dollars by 2028, with a compound annual growth rate of 8.3% from 2023 to 2028.

The future prospects of the global industrial laser system market are broad, with opportunities in numerous fields such as semiconductors and electronics, automobiles, aerospace and defense, as well as healthcare.

The main driving forces of this market include the continuous adoption of the Industrial Internet of Things, the increasing demand for material processing in various terminal industries, and the widespread application of various high-power laser products in production activities such as semiconductors, flat panel displays, lithium-ion batteries, LED for consumer electronics, and clean energy.

Industry analysts predict that fiber lasers will continue to be the largest product segment in the field of industrial laser systems during the forecast period.

Among numerous light source products, fiber lasers are highly favored for their excellent electro-optical conversion efficiency, excellent performance, minimal maintenance requirements, energy conservation and environmental protection, continuously expanding application scenarios, excellent beam quality, and higher stability.

In the future, the continuous pursuit of high efficiency, processing capability, and processing accuracy in industrial applications will drive fiber lasers towards higher brightness, higher power, and shorter pulses.

Equipped with corresponding intelligent and automation technologies, as well as unique processes and solutions, this mainstream industrial application laser will be applied in the power battery manufacturing, 3C, photovoltaic, 5G new infrastructure, rail transit, shipbuilding, aerospace, engineering machinery, and medical fields of the new energy vehicle industry, And many fields such as industrial processing (laser cutting, welding, marking, surface treatment, laser cleaning, laser cladding, additive manufacturing, etc.) have shone brightly, continuously contributing to the further transformation and upgrading of the manufacturing industry.

The application demand for fiber lasers is constantly penetrating into fields such as new energy, shipbuilding, rail transit, aerospace, 5G new infrastructure, engineering machinery, and industrial processing
In addition, due to the widespread use of lasers in semiconductor production and processing, precision micro processing fields such as semiconductors and electronics are expected to continue to be a significant niche application market.

On the one hand, the application of lasers in the semiconductor field is becoming increasingly widespread, including the manufacturing of semiconductor devices, semiconductor material processing, semiconductor testing, and other aspects.

Among them, the application of lasers in semiconductor device manufacturing is particularly prominent, which can be used for etching, photolithography, cleaning, annealing and other process steps.

In the processing of semiconductor materials, laser cutting, laser marking and other technologies have become mainstream, with advantages such as high precision, high efficiency, and non-contact. They are widely used in fields such as LED, solar cells, and semiconductor chips.

In semiconductor testing, laser has become an important detection tool, which can be used for material structure analysis, surface defect detection, crystal quality evaluation, and other aspects.

On the other hand, laser microfabrication is a rapidly developing field that is rapidly innovating the production processes of the entire industrial and scientific fields.

With the arrival of the era of high-end manufacturing, the application of precision and micro processing is a key direction of laser processing. Many industries such as microelectronics, 3C/5G, new materials, wearable electronic devices, medical equipment, aerospace, new energy vehicles, photovoltaic, OLED, and additive manufacturing, life sciences, scientific research, etc. have strong demand for laser precision processing.

From a regional perspective, in the next five years, due to the increasing investment share in the laser technology field in the Asia Pacific region, as well as the huge demand for industrial laser systems in various terminal industries such as metal processing, new energy, mechanical manufacturing, healthcare, and defense in the region, the Asia Pacific region will still become the largest market for industrial laser systems.

Source: Laser Manufacturing Network

Ähnliche Empfehlungen
  • Scientists decipher the code for extending the lifespan of perovskite solar technology

    The latest research led by the University of Surrey shows that alumina (Al2O3) nanoparticles can significantly enhance the lifespan and stability of perovskite solar cells, extending the service life of such high-efficiency energy devices tenfold.Although perovskite solar cells have advantages such as low cost and light weight compared to traditional silicon-based technologies, their commercial po...

    03-03
    Übersetzung anzeigen
  • Seyond plans to land on the Hong Kong Stock Exchange in De SPAC mode

    Recently, TechStar Acquisition Corporation (07855. HK), a special purpose acquisition company, announced that Seyond, the successor company of the special purpose acquisition transaction, has submitted a new listing application. Seyond plans to land on the Hong Kong Stock Exchange under the De SPAC model. This means that Seyond is only one step away from going public through a backdoor listing. If...

    02-14
    Übersetzung anzeigen
  • Scientists achieve extremely short laser pulses with a peak power of 6 terawatts

    RIKEN's two physicists have achieved extremely short laser pulses with a peak power of 6 terawatts (6 trillion watts) - roughly equivalent to the power generated by 6000 nuclear power plants. This achievement will contribute to the further development of attosecond lasers, for which three researchers were awarded the Nobel Prize in Physics in 2023. This study was published in the journal Nature Ph...

    2024-04-22
    Übersetzung anzeigen
  • Patterned waveguide enhanced signal amplification within perovskite nanosheets

    Researchers at Busan National University, led by Kwangseuk Kyhm, Professor of Ultra Fast Quantum Optoelectronics from the Department of Optics and Mechatronics, are enhancing signal amplification inside cesium bromide lead perovskite nanosheets through patterned waveguides.Perovskite is a highly attractive material in solar cell applications, but its nanostructure is now being explored as a new la...

    2024-01-10
    Übersetzung anzeigen
  • The globalization of three-color laser technology will be further accelerated

    Recently, the IFA2023 Consumer Electronics Show in Berlin, Germany opened, Hisense exhibited "three-color laser projection family bucket" attracted the attention of media and tourists from all over the world.Since Hisense's young fashion brand Vidda launched a series of three-color laser projection, its accumulation based on three-color laser technology is competing globally and has become a...

    2023-09-04
    Übersetzung anzeigen