Deutsch

Research Progress in High Efficiency Supercontinuum Spectra in Specific Wavebands Made by Shanghai Optics and Machinery High Power Laser Unit Technology Laboratory

402
2023-10-17 14:20:46
Übersetzung anzeigen

Recently, the High Power Laser Unit Technology Laboratory of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in research on high efficiency supercontinuum in specific bands. The relevant research results were published in the Journal of Lightwave Technology under the title of "Strong Anti Stokes and flat supercontinuum in specified band based on non generated Raman four wave mixing module".

The generation of supercontinuum spectrum is due to the coupling effect of dispersion and a large number of nonlinear effects, resulting in extremely wide spectral expansion. Due to its advantages such as wide bandwidth and high brightness, supercontinuum spectroscopy provides ultra wide light sources for many studies and has been applied in various fields such as microscopic living cell imaging, optical coherence tomography, and hyperspectral radar imaging. Supercontinuum spectra typically have widths of one to several octaves.

However, in practical applications, a very wide spectrum is not required. Considering that the spectrum of useless bands is a waste of energy, reduces efficiency, and leads to additional optical damage, it is necessary to achieve a wide and flat spectrum in specific bands. Customizing the shape of supercontinuum spectrum according to needs and limiting the spectrum to the band of interest has always been a controversial and difficult problem in supercontinuum spectrum research.

This study proposes a specific band flattened supercontinuum spectral method based on non degenerate Raman four wave mixing modulation. By controlling the dispersion of photonic crystal fibers and the peak power of the pump light, the gain of non degenerate Raman four-wave mixing is located in the required frequency bands for various application scenarios. This provides a new method for achieving supercontinuum spectra with broadband and high spectral intensity in the shortwave rectangular direction. Through this method, we developed a near-infrared flat supercontinuum spectrum with a spectral intensity of 3dB corresponding to a bandwidth of 420nm at the center wavelength of 800nm.

In addition, the relative intensity of anti Stokes light is 75.2%, and 49.6% of the total spectral energy is concentrated in the 610-1030 nm band, which provides a more effective light source for optical coherence tomography scanning. Using this supercontinuum spectrum as the light source for OCT can greatly improve axial resolution.

Figure 1 (a) Supercontinuum spectral spectra of pumps at different powers
(b) High efficiency ultra flat supercontinuum spectroscopy

Source: China Optical Journal Network

Ähnliche Empfehlungen
  • Heavyweight Natuer: New progress in the efficiency of perovskite battery modules! Professor Zhang Xiaohong from Suzhou University, an alliance unit, issued a document

    Recently, Professor Zhang Xiaohong and Professor Peng Jun from the Functional Nanomaterials and Soft Materials Research Institute (FUNSOM) of Suzhou University, along with Professor Mohammad Khaja Nazeeruddin, Professor Paul J. Dyson, Professor Zhaofu Fei, and Professor Ding Yong from North China Electric Power University, collaborated to publish their research findings on Dopant additive synergy ...

    2024-04-19
    Übersetzung anzeigen
  • Scientists demonstrate powerful UV-visible infrared full-spectrum laser

    Figure: a. Schematic diagram of the HCF-LN-CPPLN experimental setup. W. CaF? Window M, mirror.b. The bright white light circular spots emitted by the CPPLN sample.c. The first-order diffraction beam of B displays a colorful rainbow pattern from purple to red.d. The HCF-LN-CPPLN module generates normalized spectra of the output full spectrum laser signal through the second NL HHG and third NL SPM e...

    2023-08-25
    Übersetzung anzeigen
  • Laser fusion breakthrough brings greater energy explosion

    Recently, scientists from the National Ignition Facility at Lawrence Livermore National Laboratory in California produced a burst of energy by bombarding hydrogen pellets with 192 laser beams, briefly reproducing the fusion process that powers the sun. This is a repeat of an experiment in December last year, but this time the scientists generated more energy, with a gain almost double that of the ...

    2023-09-26
    Übersetzung anzeigen
  • Laser surface treatment of Ti6Al4V alloy: finite element prediction of melt pool morphology and microstructure evolution

    Researchers from the University of Calabria, University of Salento, and LUM University in Italy have reported on the progress of finite element prediction research on laser surface treatment of Ti6Al4V alloy: melt pool morphology and microstructure evolution. The related research was published in The International Journal of Advanced Manufacturing Technology under the title "Laser surface treatmen...

    04-10
    Übersetzung anzeigen
  • OPO laser testing optical components

    Optical parametric oscillator laser tests fibers and components to characterize the spectral response of optical components, thereby providing a competitive advantage in the optical industry.OPO lasers have long been used in complex testing and measurement applications, such as mass spectrometry, photoacoustic imaging, and spectroscopy. Now, these "tunable" pulse lasers are being used to facilitat...

    2024-02-20
    Übersetzung anzeigen