Deutsch

Jena Helmholtz Institute Using Air Deflection Laser Beam

893
2023-10-07 15:43:58
Übersetzung anzeigen

A novel method is used to deflect the laser beam using only air. The interdisciplinary research team reported in the journal Nature Photonics that invisible gratings made solely of air not only do not suffer damage from lasers, but also retain the original quality of the beam. The researchers have applied for a patent for their method.

Technology and Principles
This innovative technology utilizes sound waves to regulate the air in the area where the laser beam passes through. We generated gratings using acoustic density waves, "explained first author and doctoral student Yannick Schr ö del. DESY and students at the Jena Helmholtz Institute.

With the help of special speakers, researchers shaped patterns of dense and sparse areas in the air, forming stripe gratings. Similar to how different air densities in the Earth's atmosphere bend light, the density pattern acts as a grating that changes the direction of the laser beam.

However, compared to deflection in the Earth's atmosphere, deflecting light through diffraction gratings can more accurately control lasers, "Schroeder said. The characteristics of a grating are influenced by the frequency and intensity of sound waves (in other words, volume)

Laboratory results and potential
In the initial laboratory testing, strong infrared laser pulses could be redirected in this way, with an efficiency of 50%. According to the numerical model, efficiency should be significantly improved in the future. In the first test, scientists had to turn up the volume of special speakers.

Our mobile sound level is about 140 decibels, equivalent to the sound level of a jet engine a few meters away, "explained Christoph Heyl, a scientist at DESY and the Jena Helmholtz Institute responsible for the research project. Fortunately, we are within the ultrasonic range and our ears cannot receive it.

The team sees great potential for high-performance optical technology. In the experiment, researchers used an infrared laser pulse with a peak power of 20 gigawatts, which is equivalent to the power of approximately 2 billion LED bulbs. Lasers with this power level or even higher can be used for material processing, fusion research, or the latest particle accelerators.

Within this power range, the material characteristics of mirrors, lenses, and prisms greatly limit their use, and these optical components are easily damaged by strong laser beams in practice, "Heyl explained. In addition, the quality of the laser beam will also be affected. In contrast, we have successfully deflected the laser beam in a way that ensures quality without contact.

Further applications and insights
Scientists emphasize that the acoustic control principle of lasers in gases is not limited to the generation of gratings. It may also be transferred to other optical components, such as lenses and waveguides.

We have been considering this method for a long time and quickly realized that extreme sound levels are necessary. Initially, these seemed technically infeasible, "Haier explained. However, we did not give up and ultimately found a solution with the support of researchers from Darmstadt University of Technology and Inoson Company. Firstly, we tried our technology with ordinary air. For example, in the next step, we will also use other gases to utilize other wavelengths, optical properties, and geometric shapes.

The direct deflection of light into the ambient air has been confirmed, opening up promising applications, especially as a fast switch for high-power lasers. At present, we can only imagine the potential of non-contact light control and its extension to other applications, "Heyl explained. Modern optics is almost entirely based on the interaction between light and solid matter. Our method has opened up a new direction.

Source: Laser Network

Ähnliche Empfehlungen
  • Devices based on optical thermodynamics can guide light without the need for switches

    Researchers from Ming Hsieh's Department of Electrical and Computer Engineering at the University of Southern California have designed the first optical device that follows the emerging optical thermodynamic framework.The work, reported in Nature Photonics, introduces a new way of routing light in nonlinear systems—meaning systems that do not require switches, external control, or digital addressi...

    10-15
    Übersetzung anzeigen
  • It is said that laser additive manufacturing is good, but what is the advantage?

    When it comes to additive manufacturing, some people may not have heard of it, but when it comes to its other name: 3D printing, no one is unaware.In fact, the name 'additive manufacturing' better illustrates the essence of this processing method. From ancient times to the present, humans have put in great effort to achieve the goal of processing 'raw materials into the shapes we need'. From the S...

    2023-11-08
    Übersetzung anzeigen
  • Laser giant seeks $100 million financing for $422 million debt restructuring

    On August 6th local time, Luminar, a leading publicly traded company in the field of LiDAR, announced a $422 million debt restructuring and raised $100 million in new capital. This measure marks Luminar taking solid steps in optimizing its capital structure and enhancing its financial stability.In early May this year, this laser radar manufacturer released an open letter disclosing a major strateg...

    2024-08-09
    Übersetzung anzeigen
  • Infinira launches an optical solution for 1.6 Tbps ICE-D data centers

    Infinira, an expert in optical network solutions, announced the launch of a high-speed data center optical transmission module based on single-chip indium phosphide (InP) photonic integrated circuit (PIC) technology. The company claims that the module will connect at a speed of 1.6 terabits per second (Tb/s), while reducing the cost and power consumption per bit.Yingfeilang stated that its data ce...

    2024-03-18
    Übersetzung anzeigen
  • What is field assisted additive manufacturing?

    Dr. Tan Chaolin from the Singapore Institute of Manufacturing Technology, in collaboration with China University of Petroleum, Shanghai Jiao Tong University, Princeton University, University of Malta, Huazhong University of Science and Technology (Professor Zhang Haiou), University of California, Irvine, Hunan University, and EPM Consulting, published an article titled "Review on Field Assisted Me...

    2024-07-29
    Übersetzung anzeigen