- Keine Daten
Deutsch
- English
- 简体中文
- 繁体中文
- Français
- Русский
- Italiano
- 日本語
- 한국어
- Português
- Deutsch
- Español
- Türkçe
- Ελληνικά
- Nederlands
- Tiếng Việt
- Polski
Recently, the research team of the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made new progress in evaluating the laser damage resistance and damage mechanism of 532nm thin film polarizers using different laser damage test protocols. The related achievements were published in Optical Materi...
Recently, a research team from the University of California, Santa Barbara has successfully developed a new type of photonic memory computing device that integrates non reciprocal magneto-optical technology. This device achieves high-speed, high-energy efficiency, and ultra-high durability photon computing by utilizing the non reciprocal phase shift phenomenon. The research findings, titled "Integ...
Not long ago, Nuburu, the developer of industrial blue light lasers, encountered a personnel change controversy. The departure of two senior executives from its board of directors resulted in a shortage of board members, and the originally scheduled special meeting for financing proposals was forced to be cancelled as a result. Recently, Nuburu announced two new director appointments that will tak...
According to a recent report by Congic Business Intelligence, the global medical laser fiber market is expected to grow significantly at a compound annual growth rate of 6.9% from 2023 to 2030. This growth is attributed to the increasing popularity of minimally invasive surgery worldwide.The medical laser fiber market is expected to expand strongly, reaching $1.369 billion by 2030. The market is v...
In a significant leap in quantum nanophotonics, a team of European and Israeli physicists introduced a new type of polarized cavity and redefined the limits of light confinement. This groundbreaking work was detailed in a study published yesterday in Natural Materials, showcasing an unconventional photon confinement method that overcomes the traditional limitations of nanophotonics.For a long time...