Deutsch

Laser Photonics cleaning technology simplifies the removal of biofilms in industrial environments

791
2023-09-20 14:41:43
Übersetzung anzeigen

Laser Photonics Corporation is a leading global industrial developer of CleanTech laser systems for laser cleaning and other material applications, highlighting a key application of its CleanTech laser system.

Wayne Tupuola, CEO of Laser Photonics, commented, "Our CleanTech laser cleaning system provides an efficient and cost-effective method for removing biofilms from various materials and surfaces.

When microorganisms adhere to the surface of an object by secreting viscous gelatinous substances, they form a biofilm in a humid environment. Biofilm can be formed on water treatment system components, food processing plant machinery, medical equipment, and ship hulls. CleanTech laser cleaning allows you to quickly evaporate biofilm on almost any surface through a non-contact, environmentally friendly program that is safe and easy to use for operators.

CleanTech laser sandblasting technology
The CleanTech laser sandblasting technology manufactured by Laser Photonics is environmentally friendly, cost-effective, and time-saving. Applications include rust removal, paint removal, surface treatment, etc. This technology is an excellent alternative to traditional cleaning methods such as sandblasting, dry ice blasting, and other sandblasting techniques.

Source: Laser Network

Ähnliche Empfehlungen
  • Harvard University and University of Vienna invented tunable laser chips

    Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and Vienna University of Technology (TU Wien) have invented a new type of tunable semiconductor laser that shows smooth, reliable, wide-range wavelength tuning in a simple, chip-sized design.Tunable lasers are integral to many technologies, from high-speed telecommunications to medical diagnostics to safet...

    07-16
    Übersetzung anzeigen
  • Van's updates the manufacturer of laser-cut parts

    Van's Aircraft has responded to reports of ruptured dented parts found in AirVenture's latest kit. These defects are caused by external suppliers changing the process of laser cutting parts. From February 2022 to June 2023, Van's moved some parts from traditional punch manufacturing to an outside supplier that can laser cut rivet holes. The move is designed to increase the company's throughput and...

    2023-08-04
    Übersetzung anzeigen
  • Chip based comb laser illumination and unlocking of new applications

    Researchers have shown that dissipative Kerr solitons (DKS) can be used to create chip based optical frequency combs with sufficient output power for optical atomic clocks and other practical applications. This progress may lead to chip based instruments being able to perform precise measurements that were previously only possible in a few specialized laboratories.Gr é gory Moille from the ...

    2023-08-30
    Übersetzung anzeigen
  • Research and investigate the thermal effects of 3D stacked photons and electronic chips

    Hybrid 3D integrated optical transceiver. (A, B) Test setup: Place the photon chip (PIC) on the circuit board (green), and glue the electronic chip (EIC) onto the top of the photon chip. (C) It is the cross-section of the EIC-PIC component with micro protrusions. (D) Display the mesh of the finite element model.The latest progress in artificial intelligence, more specifically, is the pressure plac...

    2023-12-09
    Übersetzung anzeigen
  • Laser technology helps wafer bonding, creating a cutting-edge laser system production factory

    Recently, Coherent LaserSystems, the global leader in laser and photon solutions, and Fraunhofer IZM-ASSID jointly announced that they have reached a strategic partnership to develop and optimize alternative bonding and debonding technologies for advanced CMOS and heterogeneous integrated applications (including quantum computing), in which laser technology plays a crucial role. It is reported t...

    2024-06-19
    Übersetzung anzeigen