Deutsch

Tailoring 'hollow' hydrogen molecule generation with two-color, bicircularly polarized laser pulses

367
2023-09-16 14:21:25
Übersetzung anzeigen

Rydberg atoms and molecules are characterized by having one or more electrons in highly excited bound states. Such atoms and molecules are said to be in “Rydberg states” and are also called “hollow” atoms and molecules. Rydberg states are useful for studying various phenomena arising in intense light–matter interaction that involve electronic excitation with an intense laser pulse via optical processes like “multiphoton resonant excitation” and “frustrated tunneling ionization.”

In multiphoton resonant excitation, atoms or molecules are excited to Rydberg states through the absorption of multiple photons (units of electromagnetic radiation). In contrast, frustrated tunneling ionization-induced Rydberg states result from an interaction between the electron and the intense electric field of the laser. Thus, both the laser photon and the laser field jointly contribute to the Rydberg state excitation (RSE) process. However, the extent of the individual contributions of these two effects has not been experimentally determined so far.

Now, in a study published in Advanced Photonics, a team of researchers led by Professor Jian Wu from East China Normal University has developed an experimental method to isolate the effects of each mechanism in RSE.

Their method involves exciting hydrogen molecules to Rydberg states by controlling the photon effect and field effect using a bicircular two-color (BCTC) laser field, a type of laser field that is generated by combining two circularly polarized laser beams with different frequencies. Using two laser beams enabled the researchers to adjust the energy of the photons that are used to excite the hydrogen atoms.

 Additionally, by changing the helicity of the BCTC field, they were able to switch the electron recapture processes on and off, manipulating the field effect. Thus, they were able to generate Rydberg states while varying the extent to which each effect contributed to the process. The researchers then determined the extent to which the field excitation and photon absorption processes contributed to RSE by comparing the Rydberg state yields for different polarizations and photon counts.

“By finely adjusting the relative field strength of the two colors, we could manipulate the waveform of the laser field and the number of photons participating in the RSE processes and, in turn, the relative contributions of the field and photon effects,” explains Hongcheng Ni, the co-corresponding author of the work.

In their experimental setup, the BCTC laser fields were generated using the combination of a fundamental wave (FW) laser pulse and a second harmonic (SH) pulse with twice the fundamental frequency. These pulses were combined using a dichromatic mirror to generate either counter- or co-rotating two-color laser fields. These pulses were then focused on a supersonic jet of hydrogen gas inside a reaction microscope to create Rydberg states of hydrogen molecules.

The researchers found that increasing the relative strength of the SH field (with photons twice as energetic as the FW field) led to an overall increasing yield of Rydberg states, indicating an important role of the photon effect. Additionally, switching the polarization of the BCTC field from co-rotating to counter-rotating also led to an increase in the Rydberg state yield. The researchers attributed this observation to the suppression of the field effect for co-rotating fields.

The experimental study provides important insights into RSE in an intense laser field with potential implications for a wide range of fields, including quantum physics, chemistry, and astrophysics. “Rydberg atoms and molecules have the potential to serve as building blocks for advanced technologies related to quantum information, quantum nonlinear optics, long-range many-body interactions, and precision measurements. In this regard, our study can offer a promising route for manipulating and optimizing the RSE yields under intense laser field excitations,” says Wenbin Zhang, the first author and co-corresponding author of the work.

The promises held by hollow atoms certainly don’t ring hollow!

Source: SPIE

Ähnliche Empfehlungen
  • Korean researchers use laser ablation to create deformable micro supercapacitors

    Recently, a research team from the Korea Institute of Industrial Technology and POSTECH University successfully utilized laser sintering pattern technology to create a deformable micro supercapacitor (MSCs), specifically designed to provide energy storage solutions for soft electronic devices. This breakthrough meets the urgent need for efficient energy storage systems in stretchable devices in...

    2024-05-30
    Übersetzung anzeigen
  • 2Pi Optics has launched a new type of fisheye camera based on its so-called metasurface optics

    2Pi Optics has launched a new type of fisheye camera based on its so-called metasurface optics.The company plans to showcase this technology at the large-scale technology trade show CES 2024 in Las Vegas next week.This company, headquartered in Cambridge, Massachusetts, stated that it has created the world's leading high-resolution fisheye sensor based on optical superlens technology. This technol...

    2024-01-05
    Übersetzung anzeigen
  • The green and blue laser diode series provides higher beam quality

    Rutronik has expanded its optoelectronic product portfolio by introducing green and blue laser diodes packaged in metal cans TO38 and TO56 using AM OSRAM. They leave a deep impression with improved beam quality and stricter electro-optic tolerances. The power level of the laser diode ranges from 10mW to 100mW. Diodes such as PLT3 520FB and PLT5 450GB are now available on the market.The flexibility...

    2024-01-31
    Übersetzung anzeigen
  • BLM Group launches a new LT12 laser tube cutting system

    Recently, BLM Group in the United States has launched a new LT12 laser tube system, which performs well in cutting light and heavy pipes and profiles, and can handle materials with a diameter of up to 305 millimeters.According to the company, compared to other similar machines, the LT12 laser tube system reduces cutting time by up to 55% when cutting materials with the same maximum diameter, signi...

    2024-04-18
    Übersetzung anzeigen
  • Outstanding Optical Technologies at the 2025 Western Optoelectronics Exhibition in the United States

    In the long history of technological development, every major breakthrough in technology is like a shining star, illuminating the path forward for humanity. At the Photonics West conference in 2025, numerous breakthroughs in cutting-edge photonics technologies attracted the attention of the global academic and industrial communities. Several important technological advancements reported in this ex...

    02-12
    Übersetzung anzeigen