Deutsch

Tsinghua University has made progress in the field of magnetic field and laser composite processing

537
2023-09-16 11:54:50
Übersetzung anzeigen

The National Key Laboratory of Interface Science and Technology for High end Equipment at Tsinghua University has made progress in the field of magnetic field and laser composite processing - magnetic field assisted laser shock strengthening of Ti6Al4V alloy. The relevant research was published as a cover article titled "Magnetic Field Assisted Laser Shock Peening of Ti6Al4V Alloy" in the journal Advanced Engineering Materials.

Laser shock strengthening has a wide range of applications in improving the mechanical properties of metal materials. An important factor is the non-uniformity of mechanical properties and microstructure, such as surface hardness and grain refinement. The National Key Laboratory of Interface Science and Technology for High end Equipment at Tsinghua University has proposed a metal material strengthening method that combines femtosecond laser shock strengthening with pulsed magnetic field strengthening.

Under magnetic field assisted laser shock strengthening (MFLSP), the grain refinement effect was improved, the uniformity of surface hardness distribution of metal materials was improved, and the laser magnetic field synergistic mechanism of adjusting dislocation distribution to promote grain refinement was revealed. This method, combined with laser processing and external energy field, provides a new way to change the microstructure of metal materials and improve their mechanical properties. In aerospace There is potential for application in areas such as rail transit.

In the paper, the research team used magnetic field assisted laser shock strengthening (MFLSP) technology to refine the grain size and uniformly distribute the surface hardness of Ti6Al4V alloy. The surface morphology and crystal phase composition after treatment were analyzed using scanning electron microscopy (SEM), white light interferometer (WLI), and X-ray diffraction (XRD). The evolution of grain size and dislocation distribution was studied using electron backscatter diffraction (EBSD) for quasi in-situ microstructure characterization. In order to compare the surface strengthening effect, a hardness mapping method of alternating indentation with equal spacing and row by row was used for the original and processed samples.

Implementation of Magnetic Field Assisted Laser Shock Strengthening


MFLSP is performed by combining a magnetic field and femtosecond laser pulses, as shown in Figure 1a. Perform pulse magnetic field treatment (PMT) and FLSP treatment on the original sample in sequence. As shown in Figure 1b, the Coulombic interaction between dislocations and obstacles. Due to the orbital spin coupling effect under external magnetic field excitation, as shown in Figure 1c. As shown in Figure 1d, PMT is carried out using a half sine wave pulse magnetic field, with a pulse current of 2 Hz and a total of 50 pulses. The pulse magnetic field intensity is set to 0.8 T. The direction of the magnetic field is perpendicular to the surface of the sample. After PMT, the morphology of the original sample remained unchanged. FLSP is performed using femtosecond laser pulses (800 nm, 35 fs, 50 mW). The energy distribution of laser pulses and the distance between adjacent laser pulses are shown in Figure 1e. To characterize the surface hardening effect of MFLSP, a quasi in-situ measurement method was used, as shown in Figure 1f. Perform quasi in situ hardness characterization on the original sample, PMT, and MFLSP samples.

Figure 1: MFLSP.
The Effect of MFLSP on Grain Refinement
Use EBSD analysis to perform large-scale detection on the original sample, FLSP, and MFLSP samples. The inverse pole plot (IPF) mapping of grain distribution shows an increase in fine grains, as shown in Figures 2a-c. Measure the uniformity of grain refinement distribution through statistical analysis of grain size and area fraction in Figure 2d-f.

Figure 2: Changes in grain distribution, texture, and grain orientation differences.
The Effect of MFLSP on Surface Hardening
In order to characterize the surface hardening effect of PMT and FLSP, quasi in-situ measurements were conducted on the original sample, PMT, and MFLSP samples.

Figure 3: Comparison of surface hardness. a) Surface hardness mapping of the original sample, b) PMT sample, c) MFLSP sample, and d) FLSP sample. e) Histogram of surface hardness at the detection location. f) KDE and g) WD surface hardness analysis. h) Compare the average surface hardness of the original sample, PMT sample, MFLSP sample, and FLSP sample.
In order to investigate the promotion mechanism of grain refinement, dislocation motion characterization was performed on the original, PMT, and MFLSP samples in the same region. As shown in Figure 4.

Figure 4: Mechanism of the influence of MFLSP on microstructure.

Figure 5: Mechanism of MFLSP. a) Schematic diagram of magnetic field induced magnetic dislocations during PMT process. b) Schematic diagram of microstructure evolution of FLSP and c) MFLSP processes.

conclusion
This study proposes the use of MFLSP to refine the grain size and uniformly distribute the surface hardness of Ti6Al4V alloy by introducing magnetic field assistance. The grain refinement, dislocation motion, and surface hardness of the original, PMT, and MFLSP samples were studied. After MFLSP treatment, the proportion of refined grains is 86.63%, which is 159.57% higher than the original sample. Through the EBSD results, it can be observed that the magnetic field induced dislocation density redistributes towards the internal region, which affects the uniform strengthening effect. Under severe plastic deformation, dispersed dislocations can promote dislocation multiplication. The grain size is uniformly distributed in the MFLSP sample, which improves the uniformity of surface hardness values. The average surface hardness of the MFLSP sample increased by 18.21 HV, which is twice the increase of the FLSP sample.

The results indicate that manipulating dislocation motion during laser induced plastic deformation is beneficial for grain refinement. This study provides a new strategy for promoting grain refinement by adjusting the distribution of dislocations, providing a feasible method for adjusting the mechanical properties of metal materials with uniform microstructure distribution.

Related article links:
https://doi.org/10.1002/adem.202201843
http://sklt.tsinghua.edu.cn/info/1083/1849.htm

Source: Sohu - Yangtze River Delta Laser Alliance

Ähnliche Empfehlungen
  • Researchers have developed a new type of frequency comb that is expected to further improve the accuracy of timing

    The chip based device, known as the frequency comb, measures the frequency of light waves with unparalleled accuracy, completely changing timing, detection of exoplanets, and high-speed optical communication.Now, scientists and collaborators from the National Institute of Standards and Technology in the United States have developed a new method for manufacturing combs, which is expected to improve...

    2024-03-15
    Übersetzung anzeigen
  • Aston University is the first to adopt innovative laser detection technology using MEMS mirrors

    The School of Engineering and Physical Sciences at Aston University, located in Birmingham, UK, is at the forefront of exploring innovative laser detection methods and turbulence simulation. The plan revolves around the utilization of micro electromechanical mirrors, which have had a significant impact on various scientific fields over the past two decades.MEMS reflectors have gained widespread re...

    2024-03-07
    Übersetzung anzeigen
  • Ring Laser Accuracy: Unprecedented Daily Measurement and Mapping of Earth's Rotation

    Scientists at the Technical University of Munich have made significant progress in measuring the Earth's rotation with unprecedented accuracy. Now, the ring laser from the Wettzell Geodetic Observatory can be used to capture data at a quality level unmatched anywhere in the world. These measurements are crucial for determining the position of the Earth in space, assisting climate research, and imp...

    2023-11-14
    Übersetzung anzeigen
  • Huashu High tech launches a large format 12 laser metal 3D printer at TCT Asia

    Chinese industrial 3D printer manufacturer Huashu High tech has launched the FS811M metal powder bed fusion series platform. The FS811M series has a construction volume of 840 x 840 x 960 millimeters and can be equipped with powerful 6, 8, 10, or 12 x 500 watt fiber lasers."As the latest member of the Huashu High tech Metal 3D printer product portfolio, FS811M originates from our joint innovation ...

    2024-05-13
    Übersetzung anzeigen
  • The University of Rochester has received nearly $18 million to build the world's highest power laser system

    After receiving a $14.9 million contract from the US Department of Defense (DOD) last month to study the pulse laser effect, the University of Rochester recently received nearly $18 million in funding from the National Science Foundation (NSF) for the key technology design and prototype of the EP-OPAL, also known as the OMEGA EP coupled optical parametric amplifier line (OPAL).EP-OPAL is a new fac...

    2023-09-28
    Übersetzung anzeigen