Deutsch

Tsinghua University has made progress in the field of magnetic field and laser composite processing

411
2023-09-16 11:54:50
Übersetzung anzeigen

The National Key Laboratory of Interface Science and Technology for High end Equipment at Tsinghua University has made progress in the field of magnetic field and laser composite processing - magnetic field assisted laser shock strengthening of Ti6Al4V alloy. The relevant research was published as a cover article titled "Magnetic Field Assisted Laser Shock Peening of Ti6Al4V Alloy" in the journal Advanced Engineering Materials.

Laser shock strengthening has a wide range of applications in improving the mechanical properties of metal materials. An important factor is the non-uniformity of mechanical properties and microstructure, such as surface hardness and grain refinement. The National Key Laboratory of Interface Science and Technology for High end Equipment at Tsinghua University has proposed a metal material strengthening method that combines femtosecond laser shock strengthening with pulsed magnetic field strengthening.

Under magnetic field assisted laser shock strengthening (MFLSP), the grain refinement effect was improved, the uniformity of surface hardness distribution of metal materials was improved, and the laser magnetic field synergistic mechanism of adjusting dislocation distribution to promote grain refinement was revealed. This method, combined with laser processing and external energy field, provides a new way to change the microstructure of metal materials and improve their mechanical properties. In aerospace There is potential for application in areas such as rail transit.

In the paper, the research team used magnetic field assisted laser shock strengthening (MFLSP) technology to refine the grain size and uniformly distribute the surface hardness of Ti6Al4V alloy. The surface morphology and crystal phase composition after treatment were analyzed using scanning electron microscopy (SEM), white light interferometer (WLI), and X-ray diffraction (XRD). The evolution of grain size and dislocation distribution was studied using electron backscatter diffraction (EBSD) for quasi in-situ microstructure characterization. In order to compare the surface strengthening effect, a hardness mapping method of alternating indentation with equal spacing and row by row was used for the original and processed samples.

Implementation of Magnetic Field Assisted Laser Shock Strengthening


MFLSP is performed by combining a magnetic field and femtosecond laser pulses, as shown in Figure 1a. Perform pulse magnetic field treatment (PMT) and FLSP treatment on the original sample in sequence. As shown in Figure 1b, the Coulombic interaction between dislocations and obstacles. Due to the orbital spin coupling effect under external magnetic field excitation, as shown in Figure 1c. As shown in Figure 1d, PMT is carried out using a half sine wave pulse magnetic field, with a pulse current of 2 Hz and a total of 50 pulses. The pulse magnetic field intensity is set to 0.8 T. The direction of the magnetic field is perpendicular to the surface of the sample. After PMT, the morphology of the original sample remained unchanged. FLSP is performed using femtosecond laser pulses (800 nm, 35 fs, 50 mW). The energy distribution of laser pulses and the distance between adjacent laser pulses are shown in Figure 1e. To characterize the surface hardening effect of MFLSP, a quasi in-situ measurement method was used, as shown in Figure 1f. Perform quasi in situ hardness characterization on the original sample, PMT, and MFLSP samples.

Figure 1: MFLSP.
The Effect of MFLSP on Grain Refinement
Use EBSD analysis to perform large-scale detection on the original sample, FLSP, and MFLSP samples. The inverse pole plot (IPF) mapping of grain distribution shows an increase in fine grains, as shown in Figures 2a-c. Measure the uniformity of grain refinement distribution through statistical analysis of grain size and area fraction in Figure 2d-f.

Figure 2: Changes in grain distribution, texture, and grain orientation differences.
The Effect of MFLSP on Surface Hardening
In order to characterize the surface hardening effect of PMT and FLSP, quasi in-situ measurements were conducted on the original sample, PMT, and MFLSP samples.

Figure 3: Comparison of surface hardness. a) Surface hardness mapping of the original sample, b) PMT sample, c) MFLSP sample, and d) FLSP sample. e) Histogram of surface hardness at the detection location. f) KDE and g) WD surface hardness analysis. h) Compare the average surface hardness of the original sample, PMT sample, MFLSP sample, and FLSP sample.
In order to investigate the promotion mechanism of grain refinement, dislocation motion characterization was performed on the original, PMT, and MFLSP samples in the same region. As shown in Figure 4.

Figure 4: Mechanism of the influence of MFLSP on microstructure.

Figure 5: Mechanism of MFLSP. a) Schematic diagram of magnetic field induced magnetic dislocations during PMT process. b) Schematic diagram of microstructure evolution of FLSP and c) MFLSP processes.

conclusion
This study proposes the use of MFLSP to refine the grain size and uniformly distribute the surface hardness of Ti6Al4V alloy by introducing magnetic field assistance. The grain refinement, dislocation motion, and surface hardness of the original, PMT, and MFLSP samples were studied. After MFLSP treatment, the proportion of refined grains is 86.63%, which is 159.57% higher than the original sample. Through the EBSD results, it can be observed that the magnetic field induced dislocation density redistributes towards the internal region, which affects the uniform strengthening effect. Under severe plastic deformation, dispersed dislocations can promote dislocation multiplication. The grain size is uniformly distributed in the MFLSP sample, which improves the uniformity of surface hardness values. The average surface hardness of the MFLSP sample increased by 18.21 HV, which is twice the increase of the FLSP sample.

The results indicate that manipulating dislocation motion during laser induced plastic deformation is beneficial for grain refinement. This study provides a new strategy for promoting grain refinement by adjusting the distribution of dislocations, providing a feasible method for adjusting the mechanical properties of metal materials with uniform microstructure distribution.

Related article links:
https://doi.org/10.1002/adem.202201843
http://sklt.tsinghua.edu.cn/info/1083/1849.htm

Source: Sohu - Yangtze River Delta Laser Alliance

Ähnliche Empfehlungen
  • The United States is expected to use "AI+lasers" to deal with space debris in the future

    Due to the increasing threat of space debris in low Earth orbit around the Earth, space agencies around the world are becoming increasingly concerned about this. According to a new study funded by the National Aeronautics and Space Administration (NASA), it may be possible to send space debris that may be at risk of colliding with orbiting spacecraft to safer orbits through a laser network deploye...

    2023-10-20
    Übersetzung anzeigen
  • New Source Technology will participate in the 2024 Western Optoelectronics Show in the United States

    Laser and electro-optic product manufacturer and supplier Xinyuan Technology announced today that it plans to participate in the 2024 Western Optoelectronics Show in San Francisco from January 30th to February 1st.As a top event in the photonics industry, the Western Optoelectronics Show in the United States will return in 2024 to host another groundbreaking exhibition. This annual event att...

    2023-11-11
    Übersetzung anzeigen
  • DR Laser releases its 2024 semi annual report, achieving dual growth in revenue and profit

    A few days ago, DR laser released 2024 half-yearly report, the company realized operating income of 906 million yuan in the first half of the year, a year-on-year increase of 34.40%; net profit of 236 million yuan, a year-on-year increase of 35.51%. For the reasons of performance growth, DR laser said in the half-yearly report, the company's first half of the order continued to acceptance brough...

    2024-08-23
    Übersetzung anzeigen
  • Tianjin University's Photoacoustic Remote Sensing Microscopy Technology Breakthrough New Heights

    Recently, Professor Tian Zhen's team from Tianjin University has made a breakthrough in the field of photoacoustic remote sensing microscopy technology and successfully developed a new type of non-destructive testing method. This technology uses Kaplin high-power femtosecond laser as the key light source, further optimizing the solution to the internal flaw detection limitations of inverted chips,...

    2024-04-16
    Übersetzung anzeigen
  • ALPD laser projection technology enters the Middle East market

    With the continuous growth of user numbers and usage duration, the quality and reliability of the ALPD laser projection solution independently developed by the global laser display leader Guangfeng Technology (688007. SH) have been increasingly recognized by more and more users.It is reported that VOX Cinemas, a well-known cinema line in the Middle East, has also joined the ALPD laser projection s...

    2024-08-07
    Übersetzung anzeigen