Deutsch

New research on achieving femtosecond laser machining of multi joint micromachines

770
2023-09-15 14:06:09
Übersetzung anzeigen

The team of Wu Dong, professor of the Micro/Nano Engineering Laboratory of University of Science and Technology of China, proposed a processing strategy of femtosecond laser two in one writing into multiple materials, manufactured a micromechanical joint composed of temperature sensitive hydrogel and metal nanoparticles, and then developed a multi joint humanoid micromachine with multiple deformation modes (>10). The relevant research results were recently published in Nature Communications.

In recent years, femtosecond laser two-photon polymerization technology has been widely used as a true three-dimensional machining method with nano precision to manufacture various functional microstructures. These microstructures exhibit broad application prospects in fields such as micro nano optics, micro sensors, and micro machine systems. However, it is still highly challenging to utilize femtosecond lasers to achieve composite multi material processing and further construct multimodal micro/nano machinery.

Femtosecond laser two in one processing strategy includes the use of asymmetric two-photon polymerization to build hydrogel joints, and laser reduction deposition of silver nanoparticles in the local area of the joint. Among them, the asymmetric photopolymerization technology makes the cross-linking density of the local area of the hydrogel micro joint produce anisotropy, and finally enables it to realize the bending deformation with controllable direction and angle.

In situ laser reduction deposition can accurately process silver nanoparticles on hydrogel joints. These silver nanoparticles have a strong photothermal conversion effect, which enables the mode switching of multi joint micromachines to exhibit excellent characteristics such as ultra-short response time (30 milliseconds) and ultra-low driving power (<10 milliwatts).

As a typical example, 8 micro joints are integrated into a humanoid micromachine. Subsequently, researchers utilized spatial light modulation technology to achieve multifocal beams in 3D space, thereby accurately stimulating each micro joint. The collaborative deformation between multiple joints promotes the completion of multiple reconfigurable deformation modes in humanoid micro robotic arms. Finally, at the micrometer scale, humanoid micromachines "danced".

In concept validation, by designing the distribution and deformation direction of micro joints, a dual joint micro robotic arm can collect multiple micro particles in the same and opposite directions. In summary, the femtosecond laser two in one machining strategy can construct deformable micro joints in various local areas of three-dimensional microstructures, achieving various reconfigurable deformation modes.
Researchers have introduced that micro robotic arms with multiple deformation modes will exhibit broad application prospects in micro cargo collection, microfluidic manipulation, and cell manipulation.

Source: Micro and Nano Engineering Laboratory, University of Science and Technology of China

Ähnliche Empfehlungen
  • Laser-induced graphene sensor can diagnose diabetes through breath samples

    In the U.S., one in five of the 37 million adults who has diabetes is not aware of it (according to the U.S. CDC – Centers for Disease Control & Prevention). Current methods of diagnosing diabetes and prediabetes usually require a visit to a doctor’s office or lab work, both of which can be expensive and time-consuming. Now, diagnosing diabetes and prediabetes may be as simple as breathing. ...

    09-08
    Übersetzung anzeigen
  • 国内自主研发首套碳化硅晶锭激光剥离设备投产

           近日,从江苏通用半导体有限公司传来消息,由该公司自主研发的国内首套的8英寸碳化硅晶锭激光全自动剥离设备正式交付碳化硅衬底生产领域头部企业广州南砂晶圆半导体技术有限公司,并投入生产。 图:8英寸SiC晶锭激光全自动剥离设备       该设备可实现6英寸和8英寸碳化硅晶锭的全自动分片,包含晶锭上料、晶锭研磨、激光切割、晶片分离和晶片收集,一举填补了国内碳化硅晶锭激光剥离设备领域研发、制造的市场空白,突破了国外的技术封锁,将极大地提升我国碳化硅芯片产业的自主化、产业化水平。       该设备年可剥离碳化硅衬底20000片,实现良率95%以上,与传统的线切割工艺相比,大幅降低了产品损耗,而设备售价仅仅是国外同类产品的1/3。       近年来,碳化硅功率器件在大功率半导体市场中所占的份额不断提高,并被广泛应用于新能源汽车、城市轨道交通、风力发电、高速移动、物联网等一系列领域...

    2024-08-26
    Übersetzung anzeigen
  • 3D printed nanocellulose for green building applications

    The hydrogel material made of nano cellulose and algae was tested as an alternative and more environmentally friendly building material for the first time. This study from Chalmers Institute of Technology and the Wallenburg Wood Science Center in Sweden demonstrates how to 3D print rich sustainable materials into various building components, using much less energy than traditional building methods...

    2024-02-19
    Übersetzung anzeigen
  • Launching the world's strongest laser at a cost of 320 million euros

    Beijing, April 1st (Reporter Liu Xia) - The world's most powerful laser has been activated recently. On March 31st, the Physicist Organization Network reported that the system can enable laser pulses to reach a peak of 10 terawatts (1 terawatt=100 terawatts=1015 watts) within 1 femtosecond (1000 trillions of a second), which is expected to promote revolutionary progress in multiple fi...

    2024-04-03
    Übersetzung anzeigen
  • Juguang Technology launches miniaturized high-power semiconductor laser stack GS09 and GA03

    In today's technology field, Juguang Technology released two highly anticipated high-power semiconductor lasers on December 13th: GS09 and GA03. These two products are leading the innovation wave in the laser industry with their miniaturized design, excellent thermal management capabilities, and extensive customization flexibility.GS09 revolutionizes chip spacing by compressing the width of the st...

    2023-12-15
    Übersetzung anzeigen