Deutsch

Coherent develops borderless display cutting technology

26
2025-11-06 10:11:13
Übersetzung anzeigen

Coherent utilizes deep ultraviolet laser technology to study and improve the cutting process of displays, but the production of such displays is still very complex.

Coherent, the host of the Mid-Europe Chapter Conference of the Society of Information Display (SID-MEC Conference) in Germany, has offered a look at its plans for improved display cutting. As a provider of laser solutions, the Göttingen-based company is not only specialized in annealing as a pre-stage in display production, but also develops tools for the subsequent cutting of displays.

Coherent utilizes lasers and aims to further optimize the process so displays without bezels can eventually be cut. In recent years, these display borders have become thinner as some manufacturers folded the display edges to at least give the appearance of a bezel-less screen. However, the material still breaks at the edge, which is then hidden by a bezel. This also helps protect the display, as these edges are where display layers can potentially start to separate.

 


Laser annealing as a preliminary step in display production (Image source: Coherent)


The image clearly shows how the cut of the glass looks from the side. With a UV laser at a wavelength of 355 nm, the result is visibly uneven. At the separation edge, the display layers are not cleanly divided and a frame around the display is necessary. With 345 nm, the result improves somewhat, but it is still not sufficient for a bezel-free display.

 


Cross-section from the side with the result of three different wavelengths (Image source: Andreas Sebayang/Notebookcheck)


This can be achieved with so-called deep-UV lasers, as shown in the third image. With a wavelength of 266 nm, the laser can separate the display so precisely that the layers at the edge are barely damaged. This results in a borderless display. The material loss at the boundary is expected to be less than one pixel. According to Coherent, there already is a gap of 50 to 60 micrometers between pixels, which is where the cut can be made. Of course, the cut edge still needs to be protected.

However, display production with deep UV lasers has some drawbacks. It is not yet ready for mass production. The available 10W lasers do not allow fast cutting of displays, which would make production too expensive. Coherent expects lasers with 20W, which should make mass production possible.

Coherent has not yet said when that will happen. In any case, the equipment will have to be shipped from Göttingen to the display manufacturers and integrated into their production lines.

Source: notebookcheck

Ähnliche Empfehlungen
  • HieFo launches high-power DFB laser chip to enter coherent optical transmission market

    Recently, HieFo, a leading enterprise in the field of optical communication, officially launched its HCL30 DFB laser chip, designed specifically to meet the stringent requirements of coherent optical transmission. This chip combines efficient optical output power with excellent narrow linewidth performance, providing multiple industry standard wavelength options in the O-band and C-band, bringin...

    2024-09-13
    Übersetzung anzeigen
  • TSMC's first European wafer fab receives € 5 billion subsidy for construction

    Recently, TSMC held a groundbreaking ceremony for its first European 12 inch wafer fab. It is reported that the European Union has approved Germany to provide 5 billion euros in subsidies for the factory.It is understood that TSMC's 12 inch wafer fab is located in Dresden, Germany and is called "European Semiconductor Manufacturing Company (ESMC)". In August 2023, TSMC announced a partnership with...

    2024-08-26
    Übersetzung anzeigen
  • Laser additive manufacturing: monitoring during defect occurrence

    Researchers at the Federal Institute of Technology in Lausanne have resolved the long-standing debate surrounding laser additive manufacturing processes through a groundbreaking defect detection method.The development of laser additive manufacturing is often hindered by unexpected defects. Traditional monitoring methods, such as thermal imaging and machine learning algorithms, have shown significa...

    2023-12-06
    Übersetzung anzeigen
  • Scientists from the SLAC National Accelerator Laboratory in the United States have launched the world's most powerful X-ray laser

    Scientists at the SLAC National Accelerator Laboratory have launched the world's most powerful X-ray laser, which will be used for in-depth atomic and molecular research.It is a significant upgrade to its predecessor, as its brightness has increased by 10000 times.The upgraded laser facility also uses superconducting accelerator components, allowing it to operate at low temperatures near absolute ...

    2023-11-17
    Übersetzung anzeigen
  • Q.ANT Secures $18 Million in Refinancing for Photonic AI

    Q.ANT, a developer of artificial intelligence and high-performance computing (HPC) photonic processing systems, announced the completion of the second round of its Series A financing, reportedly valued at $18 million. The investment was led by Duquesne Family Office LLC, the investment firm of Stanley F. Druckenmiller. The increase brings Q.ANT’s total funding to US$80 M – claimed to be the larges...

    10-31
    Übersetzung anzeigen