Deutsch

Tunoptix makes breakthrough progress in meta optical platform

470
2025-07-02 10:45:16
Übersetzung anzeigen

Tunoptix, a developer of computational meta-optics, based in Seattle, WA, has made what it calls “a breakthrough in mobile-scale spectral imaging”. The company’s latest meta-optical platform captures high-fidelity spectral signatures across the visible-to-NIR spectrum in a compact form factor smaller than 1 cm3, consuming less than 500 mW, and operating at real-time frame rates.


Tunoptix’s ultra-compact hyperspectral imaging module.


The company stated, “The new technology unlocks entirely new applications for spectral intelligence in smart phones, wearables, robotics, and edge devices.”

Tunoptix previously enabled compact full-color imaging using its meta-optical platform and is now extending this capability to hyperspectral sensing. The module eliminates the need for bulky dispersive optics or mechanical scanning mechanisms.

“Advanced spectral imaging unlocks a largely untapped consumer market estimated at over $10 billion, alongside multi-billion-dollar markets in industrial, healthcare, and defense sectors,” said Naren Yellai, the CEO. “We have overcome long-standing barriers in size, cost, and complexity to make spectral intelligence truly scalable. Our technology enables a new class of devices that can perceive and interpret the world in ways conventional cameras cannot.”

The firm’s meta-optical imaging technology integrates nano-engineered lenses and spectral filters in a compact hardware stack. This end-to-end optics approach encodes spectral information at the point of capture and delivers it directly from hardware, eliminating the need for bulky optics or mechanical scanning. Historically, hyperspectral imaging has been confined to large, expensive lab-based or industrial systems, limiting its commercial potential.

Tunoptix said its platform disrupts this paradigm with a wafer-scale, manufacturable solution that delivers real-time snapshot capture of over 30 distinct spectral channels in the VNIR range with sub-20nm spectral resolution and effective per-channel resolution of ~720×480 pixels.

By bringing spectral imaging to mobile scale, Tunoptix says that its latest system enables new applications in the following areas:

Consumer electronics: skincare, cardiopulmonary monitoring, food quality, oral health, and material sensing on smart phones, wearables, and other devices.
Industrial Automation: Real-time defect detection and material classification in high-throughput manufacturing.
Agriculture & Food Safety: Field-deployable tools for assessing ripeness, spoilage, contamination, and crop monitoring.
Defense & Security: Situational awareness and chemical detection using lightweight systems on drones and autonomous platforms.
Scalability

Tunoptix employs a fabless manufacturing model, leveraging standard CMOS-compatible processes for high-yield, wafer-level fabrication of its meta-optical elements. The company partners with foundries and optomechanical integrators to support scalable production for high volume.

The company’s announcement added, “Future mobile designs will offer higher spatial resolution (greater than 4K), extended SWIR coverage, and application-optimized configurations for wearables, factory vision systems, and defense platforms. [We are] also actively developing extensions for optical and Raman spectroscopy to support mobile chemical and molecular analysis.”

“We are seeing strong interest across multiple verticals, including tier-one OEMs in the consumer electronics space,” said Yellai. “Our goal is to democratize spectral intelligence by making it a core capability of next-generation devices. We’re actively seeking to collaborate with OEMs and system integrators to bring our technology to market at scale.”

Source: optics.org

Ähnliche Empfehlungen
  • Lumibird, a well-known French optoelectronics company, increased its lidar production capacity by 16% year-on-year and was boosted by strong market demand

    On July 24, Lumibird, a well-known French optoelectronics company, released its latest semi-annual report. In the first half of the year, Lumibird's revenues were 97.2 million euros, up 16 percent from the same period last year. Of this, the Optoelectronics division contributed 45.9 million euros and the remaining 51.3 million euros came from its medical division. In the second quarter (Q2) ended ...

    2023-08-04
    Übersetzung anzeigen
  • Progress in the Research of Continuous Wave Laser in Chemical Industry

    Laser plays an important role in fields such as photonic chips, laser displays, and in vehicle radars. Organic materials have advantages such as molecular diversity, energy level richness, heterogeneous compatibility, and ease of processing. They have significant advantages in the construction of high-performance and multifunctional lasers and are expected to further innovate laser technology and ...

    2023-08-31
    Übersetzung anzeigen
  • 253 million US dollars! This Canadian medical fiber optic sensor manufacturer will be acquired

    Recently, Haemantics Corporation, which focuses on providing innovative medical solutions with proprietary optical technology, announced that the company has reached a final agreement. According to the agreement, Haemonics will acquire all outstanding shares of Canadian fiber optic sensor manufacturer OpSens for CAD 2.90 per share.This is an all cash transaction with a fully diluted equity value o...

    2023-10-18
    Übersetzung anzeigen
  • Advancing Astronomy: Using Laser Guided Star Adaptive Optics to Obtain clearer celestial views

    Adaptive optics is defined as an advanced optical system used to correct the transmission medium between the subject and the image, providing users with clearer images. Adaptive optics helps to use a complex combination of deformable mirrors to correct images in real-time through distortion in the Earth's atmosphere. These images are of greater importance in many vertical industries such as health...

    2024-02-22
    Übersetzung anzeigen
  • China University of Science and Technology realizes millisecond level integrated quantum memory

    Recently, the team led by Academician Guo Guangcan from the University of Science and Technology of China has made significant progress in the field of integrated quantum storage. The research team led by Li Chuanfeng and Zhou Zongquan has improved the storage time of integrated quantum memory from 10 microseconds to milliseconds based on their original noiseless photon echo (NLPE) scheme, while s...

    03-31
    Übersetzung anzeigen