Deutsch

First 6-inch thin film lithium niobate photonic chip wafer pilot production line

625
2025-06-11 10:52:36
Übersetzung anzeigen

Recently, Shanghai Jiao Tong University Wuxi Photon Chip Research Institute (CHIPX) located in Binhu District, Wuxi City, has achieved a breakthrough - the first 6-inch thin film lithium niobate photon chip wafer has been produced on China's first photon chip pilot line, and high-performance thin film lithium niobate modulator chips with ultra-low loss and ultra-high bandwidth have been mass-produced on a large scale, with key technical indicators reaching the international advanced level.

Photon chips are the core hardware carrier of photon computing, and their industrialization process is related to the autonomous and controllable strategy in the field of quantum information. Previously, due to the lack of a common key process technology platform, China's photonics technology faced the dilemma of "difficult mass production of laboratory results", which was a "bottleneck" problem restricting the development of the industry. The launch of the photonic chip pilot line became the key to breaking the deadlock. As the "number one project" of the quantum technology race track in Binhu District and a future industrial landmark in the region, Shanghai Jiao Tong University Wuxi Photon Chip Research Institute broke ground at the end of 2022 and took the lead in launching the construction of China's first photon chip pilot line. Now, the first wafer has been successfully offline, and the pilot platform has achieved mass production and production.

 


It is reported that as a high-performance optoelectronic material, thin film lithium niobate has advantages such as ultrafast electro-optic effect, high bandwidth, and low power consumption, showing great potential in fields such as 5G communication and quantum computing. However, due to the high brittleness of thin film lithium niobate materials, the preparation of large-sized thin film lithium niobate wafers has always been challenging. Currently, with the advanced nanoscale processing equipment and rapid process iteration capability of the pilot platform, the process team has systematically solved the bottleneck of wafer level photonic chip integration through a combination of deep ultraviolet (DUV) lithography and thin film etching through extensive process validation and optimization.

Binhu District is one of the main gathering areas for the integrated circuit industry in Wuxi. A number of high-energy level scientific and technological innovation platforms have been established here, including the National Integrated Circuit Design Center and the Intelligent Industry Innovation Center of Tsinghua Wuxi Research Institute; Gathering over 200 integrated circuit enterprises, we have established an integrated circuit design industry cluster represented by companies such as Zhongke Xin, Zhuosheng Microelectronics, and Guoxin Microelectronics, and have been selected as a characteristic industry cluster in the province.

Source: Opticsky

Ähnliche Empfehlungen
  • Tiny yet Powerful: How Lasers on Chips Change the Game Rules of Photonics

    Chip level ultrafast mode-locked laser based on nanophotonic lithium niobate.Researchers have created a compact mode-locked laser integrated into a nanophotonic platform, capable of generating high-power and ultrafast optical pulses. The breakthrough in miniaturization of MLL technology can significantly expand the application of photonics.Innovation in mode-locked laser technologyTo improve the t...

    2023-12-27
    Übersetzung anzeigen
  • Professor Hu Yanlei from the University of Science and Technology of China, Nat Commun Preparation of Durable Janus Thin Films with Mode Switching by Femtosecond Laser

    Janus film is widely used in fields such as oil-water separation, water mist collection, and wearable patches due to its unique transmembrane directional water transport function. The function of traditional Janus thin films comes from the thickness direction of microchannels and single-sided chemical coating modifications (single-sided hydrophilic and hydrophobic modification of hydrophobic and h...

    2024-02-22
    Übersetzung anzeigen
  • Laser Photonics officially launches its SaberTech laser cutting system

    Recently, Laser Photonics (LPC) officially launched its SaberTech laser cutting system. This system not only enriches the product line of LPC's laser cleaning, welding, marking, and engraving systems, but also marks another important breakthrough for the company in the field of laser technology. This product release is another heavyweight measure after LPC's latest generation laser cleaning system...

    2024-06-19
    Übersetzung anzeigen
  • New LiDAR can 'see' faces from hundreds of meters away

    At a distance of 325 meters, the human eye may only be able to distinguish between a person's head and body, making it difficult to discern any other differences. But a research team including Heriot Watt University in the UK and Massachusetts Institute of Technology in the US has developed a new type of LiDAR scanner that can perform detailed analysis of a person's face from such a distance and c...

    02-11
    Übersetzung anzeigen
  • Graphene terahertz absorber and graded plasma metamaterials

    Optical metamaterials are an effective way to utilize their superior photon capture capabilities. Therefore, perfect absorbers can be achieved through nanoscale resonant plasmas and metamaterial structures.Metamaterial perfect absorbers (MPAs) are typically composed of periodic subwavelength metals (such as plasma superabsorbers) or dielectric resonance units. Compared with static passive physical...

    2024-05-20
    Übersetzung anzeigen