Deutsch

New machine learning algorithm accurately decodes molecular optical 'fingerprints'

638
2025-05-09 10:57:00
Übersetzung anzeigen

Recently, a research team from Rice University in the United States developed a new machine learning algorithm - Peak Sensitive Elastic Network Logistic Regression (PSE-LR). This algorithm is adept at interpreting the unique optical characteristics of molecules, materials, and disease biomarkers, which can help achieve faster and more accurate medical diagnosis and sample analysis. The relevant paper was published in the latest issue of the journal Nano.

The research team stated that the core breakthrough of this technology lies in teaching computers to recognize unique "fingerprints" generated by the interaction between molecules or materials and light. With the help of this technology, in the future, doctors may be able to capture early signals of Alzheimer's disease by simply shining light on a drop of liquid or tissue sample.

PSE-LR not only has the ability to distinguish autumn hair, but also has the interpretability of being open and honest. Unlike other "black box" machine learning models, it can generate clear "feature importance maps" that accurately highlight key spectral segments, making diagnostic results reliable, interpretable, traceable, and easy to verify.

Compared with other machine learning models, PSE-LR shows superior performance, especially in identifying subtle or overlapping spectral features. In addition, in the subsequent series of validation experiments, the performance of the algorithm was also commendable, including the successful detection of the trace presence of COVID-19 spike protein in the liquid, the accurate identification of neuroprotective components in mouse brain tissue, the effective differentiation of microscopic spectral differences in Alzheimer's disease samples, and the identification of the unique optical characteristics of two-dimensional semiconductor materials.

Source: Opticsky

Ähnliche Empfehlungen
  • TRUMPF machine cooler saves 50 percent energy

    Ditzingen, 05. March 2025 – At its in-house exhibition INTECH, high-tech company TRUMPF is showcasing a new cooler for its laser cutting machines. The new unit is capable of reducing energy consumed during the cooling process and uses fifty percent less energy than conventional solutions. Unlike conventional coolers, the main components of this new solution— such as pumps, fans and compressors— ar...

    03-14
    Übersetzung anzeigen
  • 10.30 Shenzhen Munich South China Laser Exhibition awaits you

    The Munich South China Laser Exhibition is about to open!As a member exhibition of the South China International Intelligent Manufacturing, Advanced Electronics, and Laser Technology Expo (referred to as "LEAP Expo"), it will be held from October 30 to November 1, 2023 at the Shenzhen International Convention and Exhibition Center (Bao'an New Hall) in conjunction with the Munich South China Elect...

    2023-10-26
    Übersetzung anzeigen
  • A research team from the University of Chicago in the United States has demonstrated a new method for obtaining mid infrared emission using colloidal quantum dots (QDs)

    According to reports, a research team at the University of Chicago in the United States recently demonstrated a new method for obtaining mid infrared emission using colloidal quantum dots (QDs), which may open up new applications for mid infrared light sources.Colloidal quantum dots are a type of semiconductor nanocrystal material that provides a promising approach for the synthesis of light sourc...

    2023-09-21
    Übersetzung anzeigen
  • Analysis of Optically Pumped Semiconductor Laser Technology for Promoting the Development of Life Sciences

    Optically Pumped Semiconductor Lasers technology has achieved great success in the market due to its various unique advantages, with over 100000 OPSL devices currently operating in the market. This article introduces the application and new developments of OPSL in the fields of flow cytometry and DNA sequencing.OPSL has the characteristics of flexible wavelength extension, adjustable power, compac...

    2024-02-01
    Übersetzung anzeigen
  • Fraunhofer ISE develops a faster laser system for wafer processing

    By using a new type of laser, the processing speed of wafers can be 10 to 20 times faster than before. This is the result of a research project at the Fraunhofer Institute for Solar Systems in Germany.Researchers have developed a prototype that can use ultraviolet waves to carve the most intricate structures on silicon wafers. The new system concept enables solar cell manufacturers to perform lase...

    2023-12-23
    Übersetzung anzeigen