Deutsch

Nanjing University of Science and Technology has made new progress in the field of programmable lensless holographic cameras

288
2025-04-14 10:29:58
Übersetzung anzeigen

Recently, Professor Chen Qian and Professor Zuo Chao's research group from the School of Electronic Engineering and Optoelectronic Technology at Nanjing University of Science and Technology proposed a minimalist optical imaging method based on programmable masks - programmable Fresnel zone aperture lensless imaging technology. The related achievement, titled "Lensless Imaging with a Programmable Fresnel Zone Aperture," was published in the top international journal Science Advances. Zhang Xu, a master's student from the School of Optoelectronics at Nanjing University of Science and Technology in 2022, and Wang Bowen, a doctoral student from the School of Optoelectronics in 2019, are co first authors. Professor Chen Qian and Professor Zuo Chao are co corresponding authors, and they are the first completion unit and communication unit.

Traditional optical imaging systems mainly rely on the collaborative cooperation between image sensors and optical lenses to achieve the recording and focusing of optical signals separately. In recent years, with the rapid development of applications such as mobile photography and wearable devices, image sensors have achieved miniaturization and low cost, basically meeting the needs of most application scenarios for lightweight and economy. However, optical lenses, especially high-performance lenses, still face problems such as large size, heavy weight, and high manufacturing costs, which seriously restrict the application of imaging systems in scenarios with high lightweight requirements such as virtual reality (VR), augmented reality (AR), and human-computer interaction. This has become a key bottleneck that currently restricts the overall performance improvement and application expansion of the system.

Lens free imaging technology introduces a front-end optical encoding mask to replace traditional lens control of the light field, and combines back-end digital computing to demodulate the light field information, effectively reducing the cost and volume of traditional optical imaging systems, and achieving high-dimensional perception and phase inversion of incoherent light fields. However, existing static masks have fixed mask structures and system parameters that are difficult to flexibly adjust according to scene requirements, which makes the system prone to aliasing artifacts, reconstruction pathology, and other problems under complex or non ideal conditions, affecting imaging quality and usability. Therefore, how to further improve system resolution, signal-to-noise ratio, and enhance adaptability to complex dynamic scenes while maintaining the basic architecture of "minimalist optics" for lensless imaging is a core issue and technical challenge that urgently needs to be overcome in this field.

To address the aforementioned issues, the research team innovatively introduced the concept of "encoding regulation" and proposed a minimalist optical imaging technique based on "programmable masks" - the LenslessImaging with a Programmable Fresnel Zone Aperture (FZA) lensless imaging method (LIP). By dynamically displaying FZA patterns with spatial offset on programmable masks, LIP can achieve sub aperture information modulation and acquisition in the frequency domain, and fuse the data of each sub aperture using parallel reconstruction algorithms to obtain high-resolution, high signal-to-noise ratio lensless holographic images (Figure 1).

 



Figure 1. Schematic diagram of programmable FZA lensless holographic imaging system. (A) Composition and schematic diagram of imaging system; (B) Lens free imaging framework and encoding control strategy based on joint optimization of spatial and frequency domains; (C) Small scale LIP lensless imaging module independently developed by the team

Source: opticsky

Ähnliche Empfehlungen
  • The construction of Hefei Advanced Light Source Project held a launch ceremony, expected to be completed and released in 5 years

    Recently, in the Future Science City of Hefei City, Anhui Province, the National Major Science and Technology Infrastructure Project and Supporting Projects of Hefei Advanced Light Source announced the start of construction, with a planned land area of approximately 656 acres. The first phase of the project is expected to be completed by September 2028.After completion, it will become an internati...

    2023-09-23
    Übersetzung anzeigen
  • Luxiner launches LXR ultra short pulse laser platform

    Luxiner, the global leader in laser technology, has launched LXR ® The ultra short pulse (USP) laser platform is a revolutionary leap in industrial laser processing. The LXR platform provides unparalleled performance, versatility, and reliability, making significant progress in burst mode processing. Micro Miracle MasterThe world of miniaturization is flourishing due to the continuous improvemen...

    2024-06-11
    Übersetzung anzeigen
  • 3D printed chocolate: a delicious fusion of innovation and sustainable development

    In the era of sustainable development and cutting-edge technology, the integration of 3D printing and culinary art is not only an innovation, but also a proof of human creativity. Imagine in such a world, your desserts are not just coming out of the kitchen, but carefully designed and printed layer by layer. This is not a glimpse of the distant future, but the reality of today, as developers have ...

    2024-02-19
    Übersetzung anzeigen
  • IPG Photonics has unveiled a new dual-beam laser with single-mode core power at the Novi Battery Show in Michigan

    IPG Photonics Corporation, a global leader in fiber laser technology, will highlight new and innovative laser solutions at the Battery Show from September 12 to 14, 2023 in Novi, Michigan, USA.The IPG booth will include industry-leading fiber laser sources and automated laser systems for electric vehicle battery welding applications.New laser technology pushes the limits of battery welding speedTo...

    2023-09-12
    Übersetzung anzeigen
  • Implementing and studying non Hermitian topological physics using mode-locked lasers

    A mode-locked laser is an advanced laser that can generate very short optical pulses with durations ranging from femtoseconds to picoseconds. These lasers are widely used for studying ultrafast and nonlinear optical phenomena, but they have also been proven to be applicable to various technological applications.Researchers at the California Institute of Technology have recently been exploring the ...

    2024-03-27
    Übersetzung anzeigen