Deutsch

Laser surface treatment of Ti6Al4V alloy: finite element prediction of melt pool morphology and microstructure evolution

1066
2025-04-10 11:08:27
Übersetzung anzeigen

Researchers from the University of Calabria, University of Salento, and LUM University in Italy have reported on the progress of finite element prediction research on laser surface treatment of Ti6Al4V alloy: melt pool morphology and microstructure evolution. The related research was published in The International Journal of Advanced Manufacturing Technology under the title "Laser surface treatment of Ti6Al4V alloy: finite element analysis for predicting mole pool geometry and microstructure modifications".

This study systematically investigated the effect of laser surface treatment on Ti6Al4V titanium alloy through a combination of experiments and finite element analysis. The experiment used a fixed pulse frequency and average power, and process parameters with varying laser scanning speeds (30, 45, and 60 mm/s). The heat exchange coefficient of the numerical model was calibrated by real-time monitoring of the temperature field. Metallographic analysis shows a significant increase in hardness in the remelted zone, and X-ray diffraction confirms the formation of α - phase martensite (particularly evident during low-speed scanning). After experimental data calibration, the established 3D finite element model can accurately predict geometric features such as melt pool width and depth, and effectively characterize the influence mechanism of laser treatment on microstructure and mechanical properties. Research has shown that scanning speed is a key parameter in regulating the size of the melt pool and the behavior of phase transformation, which can significantly improve the hardness and wear resistance of alloys.


Figure 1 Metallographic analysis of laser treated surface cross-section (scanning speed 45mm/s)


Figure 2 Finite Element Modeling: Trajectory of Heat Source Movement and Subsurface Heat Field Distribution in the Cross Section of the Workpiece


Figure 3a) Gaussian heat source model b) DEFORM heat exchange window c) Calibration of heat source model parameters metallographic (30mm/s)


Figure 4 Calibration process for trial and error of heat exchange coefficient


Figure 5 Numerical simulation and experimental verification of laser surface heat treatment (45mm/s)

 


Figure 6 Finite element prediction of molten pool morphology (45mm/s)


Figure 7 Temperature gradient and remelting layer prediction (60mm/s)


Figure 8 XRD phase analysis (60mm/s)


Figure 9 Finite Element Thermal Gradient Prediction

 


Figure 10 Experimental simulation comparison of geometric dimensions of molten pool and prediction of remelted layer

 


Figure 11: The Influence of Scanning Speed on the Geometric Dimensions of the Molten Pool


This study comprehensively explores the effect of laser surface treatment on Ti6Al4V titanium alloy, with a focus on the influence of different laser scanning speeds on the microstructure and mechanical properties of the treated surface. This study reveals the regulatory mechanism of laser scanning speed on the surface microstructure and mechanical properties of Ti6Al4V titanium alloy:

1. Control of melt pool morphology: When the scanning speed increases from 30 to 60 mm/s, the melt depth decreases by about 65%, the melt width decreases by 30%, and the thickness of the remelted layer changes relatively smoothly. This is attributed to the fact that high-speed scanning shortens the laser material interaction time and limits energy input.

2. Hardness strengthening mechanism: The nano hardness in the remelted zone is increased by 24-30% compared to the matrix, and XRD confirms that the formation of α - phase martensite is the main cause. The supersaturated phase originates from the high-temperature quenching characteristics of laser treatment, and the surface Ti oxide layer further strengthens the hardening effect.

3. Model validation: The finite element model based on SFTC DEFORM-3D is highly consistent with experimental data in predicting the geometric dimensions of the melt pool, melt depth, and remelted layer thickness, successfully reproducing the temperature gradient and phase transformation behavior during the processing.

The experimental numerical joint analysis method established in this study provides a reliable tool for optimizing laser surface treatment processes, which helps to improve the mechanical properties and corrosion resistance of Ti6Al4V alloy in industrial applications. The research results have deepened the understanding of laser surface modification technology and have guiding significance for improving the performance of titanium alloy components in aerospace, biomedicine and other fields.

Source: Yangtze River Delta Laser Alliance

Ähnliche Empfehlungen
  • Breaking the limits of optical imaging by processing trillions of frames per second

    Pursuing higher speed is not just exclusive to athletes. Researchers can also achieve such feats through their findings. The research results of Professor Liang Jinyang and his team from the National Institute of Science (INRS) have recently been published in the journal Nature Communications.The team located at the INRS É nergie Mat é riaux T é l é communications resea...

    2024-04-08
    Übersetzung anzeigen
  • New Meltio robot unit provides large-scale line laser DED

    Meltio is an expert in the field of cost-effective linear laser metal deposition additive manufacturing technology (directed energy deposition, DED) and has launched the new Meltio Robot Cell, a turnkey metal additive manufacturing solution equipped with industrial robotic arms and the recently launched slicing software Meltio Space.The new hardware aligns with the vision of this Spanish company t...

    2023-09-22
    Übersetzung anzeigen
  • LiDAR solutions provider Cepton acquired by KOITO

    On July 29, 2024, Cepton, a provider of high-performance LiDAR solutions, announced the signing of the final agreement for its acquisition, making it the acquiring company's subsidiary in the United States.Image source: CeptonAccording to the agreement, the acquirer is the internationally renowned automotive lighting giant KOITO, which was established in 1915 and has a history of over a hundred ye...

    2024-08-01
    Übersetzung anzeigen
  • Important Discovery in Aluminum Alloy Laser Coaxial Fusion Additive Manufacturing

    Aluminum alloy has unique advantages such as lightweight, high strength, and excellent corrosion resistance, and is highly favored in the aerospace manufacturing field. Laser Coaxial Fusion Additive Manufacturing (LCWAM) adopts beam shaping technology, which uses wire as the deposition material to melt and stack layer by layer. Compared to traditional side axis wire feeding technology, laser coaxi...

    2024-04-29
    Übersetzung anzeigen
  • Enhanced dielectric, electrical, and electro-optic properties: investigation of the interaction of dispersed CdSe/ZnS quantum dots in 8OCB liquid crystals in the intermediate phase

    authorElsa Lani, Aloka SinhaabstractAt present, the progress in developing new liquid crystal materials for next-generation applications mainly focuses on improving the physical properties of liquid crystal systems.Recent research progress has shown that functionalized nanoparticles embedded in LC matrix can significantly alter the properties of LC materials based on the interaction between host m...

    2024-03-04
    Übersetzung anzeigen