Deutsch

Significant breakthrough in intelligent spectral environment perception research at Xi'an Institute of Optics and Fine Mechanics

473
2025-03-20 17:10:53
Übersetzung anzeigen

Recently, the Xi'an Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has made significant progress in the field of intelligent spectral environmental perception. Relevant research results have been published in the top journal in the field of environmental science, Environmental Science&Technology (Nature Index, 5-Year IF: 11.7), and have been selected as cover papers. The first author of the paper is Liu Jiacheng, and the corresponding authors are Yu Tao and Hu Bingliang. Xi'an Institute of Optics and Fine Mechanics is the first completion unit and communication unit. This is the first time that Xi'an Institute of Optics and Fine Mechanics has published an article in this journal, marking a new breakthrough in the research of intelligent spectral environment perception in the international academic field.

Spectroscopy is an important interdisciplinary field mainly involving physics and chemistry, which studies the interaction between 
electromagnetic waves and matter through spectroscopy. Detecting the absorption spectrum of water bodies can reflect the absorption characteristics of water molecules towards specific wavelengths of light, thereby quantitatively inverting water environmental quality parameters. The complex background interference of water bodies poses great challenges to high-precision quantitative inversion. Existing research mainly relies on data-driven machine learning models for quantitative inversion of water quality parameters, which is difficult to adapt to complex surface water scenarios with wide geographical distribution.

In response to the above challenges, the research team has introduced the Transformer architecture for spectral quantitative inversion of water quality parameters for the first time, and proposed the concept of Physicochemical Informed Learning to construct a quantitative inversion model for physical and chemical driven Transformers. This method embeds prior physical and chemical information into the spectral encoding process, and combines the global feature extraction capability of the Transformer architecture to improve the accuracy of complex surface water spectral quantitative inversion. The results show that this method exhibits excellent water quality parameter inversion ability in complex surface water scenarios with wide geographical distribution, providing a new theoretical basis and technical path for the application of intelligent spectroscopy technology in the environmental field.

 



Research methodology and process


Hu Bingliang and Yu Tao's team have conducted long-term research in high-resolution hyperspectral imaging remote sensing, fine spectral detection, and quantitative analysis. This research is an important achievement made by the team in benchmarking the country's efforts to promote the construction of a "Beautiful China". It is also highly recognized by the international academic community for the achievements in the field of intelligent spectral environment perception at Xi'an Institute of Optics and Fine Mechanics. It is also an important progress made by Xi'an Institute of Optics and Fine Mechanics in focusing on spectral imaging and fine spectral detection technology. The research work has been supported by the national key research and development plan, the Chinese Academy of Sciences pilot project (Class A) and other projects.

Source: opticsky

Ähnliche Empfehlungen
  • BMW uses WAAM 3D printing to optimize derivative designs

    BMW explained how to use WAAM (Arc Additive Manufacturing) starting from 2025 to manufacture lighter and stronger automotive components and reduce waste generation, in order to optimize the use of generative design tools.The demonstrated WAAM process uses aluminum wire raw materials directly deposited through laser welding heads, enabling automotive companies to manufacture lighter and more robust...

    2024-04-13
    Übersetzung anzeigen
  • Progress in the Study of Nonlinear Behavior of Platinum Selenide Induced by Strong Terahertz at Shanghai Optics and Machinery Institute

    Recently, the research team of the State Key Laboratory of Intense Field Laser Physics of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made progress in the research on the nonlinear behavior and mechanism of platinum selenide in terahertz band. The research team systematically studied the spectral and optical intensity characteristics of platinum selenide und...

    2024-05-23
    Übersetzung anzeigen
  • Received NASA contract! Breakthrough blue light laser technology leads the space power revolution

    On May 6th, NUBURU, a leading enterprise in high-power and high brightness industrial blue laser technology, announced that the company has been awarded a second phase contract worth $850000 by the National Aeronautics and Space Administration (NASA) to promote blue laser power transmission technology as a unique solution that significantly reduces the size and weight of equipment required for lun...

    2024-05-08
    Übersetzung anzeigen
  • Additive manufacturing of free-form optical devices for space use

    A group of researchers and companies are using the iLAuNCH Trailblazer program to develop and identify new optical manufacturing processes and materials for space flight applications, and demonstrating them in space cameras.The University of South Australia, together with SMR Australia and VPG Innovation, will utilize an emerging optical manufacturing technology called freeform optics, which is no...

    2023-12-04
    Übersetzung anzeigen
  • Nat. Commun.: Two color orthogonal polarized organic light-emitting diode

    In recent years, linearly polarized organic light-emitting diodes have greatly enriched the application scenarios of polarization optics and optoelectronics industries. The low-cost and large-area preparation of linearly polarized organic light-emitting diodes with high polarization, strong directional emission, narrow bandwidth, and multi-color adjustability is an important challenge in the curre...

    2024-02-29
    Übersetzung anzeigen